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I. MAXIMUM LIKELTHOOD PROPERTIES

1.1 Introduction and summary

The likelihood ratio test was proposed by Neyman and Pearson
[1928] as a method for testing a composite hypothesis. Subsequently,
Wilks [1938] showed that, when the null hypothesis is true, the
likelihood ratio statistic -2lnxn, based on a sample of size n, has
a limiting central chi-square distribution with £ degrees of freedom,
where /£ equals the number of functionally independent parameters
specified by the null hypothesis. In a rather extensive paper, Wald
[1943] offered a proof that the non-null distribution of -21nkn
converges uniformly in distribution to the noncentral chi-square
distribution. However, Wald made several assumptions that are d4iffi-
cult to verify for specific utilizations of his results, for example,
the assumptions that the maximum likelihood estimates are uniformly
consistent and that the likelihood ratio test is uniformly consistent.
Wald stated that uniform consistency of maximum likelihood estimates
would be proved in a subsequent paper but this paper did not appear.

Many authors have used Wald's result, but they appear to
diéregard the uniform consistency assumptions. The purpose of this
study is to give a proof that -21nxn converges in distribution (not
necessarily uniformly) to a noncentral chi-square distribution under
local alternatives to the null hypothesis, the assumptions made being *
more readily verified. Consideration is limited to maximum likelihood
estimates that are solutions to the likelihood equations obtained

2
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for the maximization process. This approach was alsoc used by Chanda

[1954] and subsequently by Bradley and Gart [1962].

1.2 Notation, assumptions, and preliminary lemmas

Let f(x,8) denote a density or probability function (continuous
or discrete) where X is a p-dimensional random vector with values over
a region R independent of § = (el,...,e ), a parameter vector lying
in a k-dimensional parameter space Q. Let {zd},a=l,...,n, be n inde-
pendent observation vectors on X. For brevity the development below
is given for random vectors x which are continuous. However, the
entire discussion applies to X discrete if integration is replaced
throughout by summation.

For convenience, the following notation will be introduced.
Let alnf(zjg)/aer and af(g,g)/aer be denoted by alnf/aer and af/aer
respectively, with similar notation being employed for second- and

third-order derivatives. In addition, alnf/aer[e, will denote the

value of alnf/aer at the point 0'el with the same convention used for
other functions.

The following assumptions will be made and will be designated
as Assumption A.

Al. For almost all xeR and for all BeQ,

olnf Bglnf and BBlnf
08 ’ 56_08 98 36 ob
r r s r st
exist for r,s,t =1,...,k.



A3,

AL,

L
For all f(Z’Q) that are densities, for almost all xeR and for
every 0eQ,

Fr

Bf < Fr(z) and lw—‘ < FI‘S(‘}—()’
r S

6_
r

where Fr(z) and FTS(E) are integrable over R, r,s =1,...,k.

2
These assumptions permit certain interchanges of order of

differentiation and integration or summation.

For every 6€Q, the matrix C(8) = [Crs(g); r,s =1,...,k] with

Olnf| Olnf
Crs(@) = By [Ser 5 3 9]

is positive definite with finite determinant.
For almost all xeR and for all 9eQ,
l 3 1nf

Seréeséet‘ < Heg(®)

and

Eg[Hrst<§)] <M<,

and there exists a positive real number ﬁl’ such that

l+T]l
} <L <o

EQ[ Hrst(z) - EQ{Hrst(E)}

for r,s,t = 1,...,k, and where M and L are positive constants.
These assumptions are essentially those given by Chanda [1954]

which in turn are the multiparameter extension of those given
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by Cramér [1946, p.500]. The one exception is the last part of
Assumption AL above. Reasons for adding this assumption will be
made apparent in the discussion in Lemma 1.6. The assumptions
on the first and second derivatives of f(x,0) and Inf(x,9) are
similar to assumptions made by Wald, in the sense that they allow
differentiation and integration or summation to be interchanged as
was assumed by Wald.

In addition to Assumption A, the following assumption will be

made and will be designated as Assumption B.

B. There exists a positive real number Vo such that whenever

| 1 .”: k " yl v "e()

lem - ell= zlep - 01l <v,, 87, g"en,

2 2
C( o71nf > ] ,
By (o5 <T <o
- r S om
for r,s = 1,...,k, and where T is a positive constant.

Assumption B is closely related to Assumption ITI(b) of Wald [19h3,
p. 429]. Wald assumed the existence of functions wrs(g,g'", &) and
Qrs(z,g'", &), respectively the greatest lower bound and the least

upper bound of Bglnf/éeraes for any 8" in the region,

o
[le" - 6'"]l <5, about '", such that Eg,[{v,  (x,6'", 8)}7] and

1 1
Ee,[{wrs(f,g'",6)}2] are bounded whenever || 9= 9l < 5V, and &< Zv

X
The following assumption, designated as Assumption C, is iden-

tical with Assumption V of Wald [1943, p. L29].
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There exists a positive real number ﬁé such that

247,
o (J3] D)

<K<owo, r=1,...,k,

for all 9e2, where K is a positive constant. This assumption 1is

needed to prove that

*
Anf
Pty - L 3 o2 ) r=1 K
2z -ﬁ QZlT’ = L ER)

has a multivariate normal distribution.

An example of a class of distributions which satisfy these

assumptions is the exponential family

£(x|0) = Exp {A(8)B(x) + C(x) + D(9)}

such that

(A) The third partial derivatives of A(6) and D(8) are
bounded functions of 6.

() B, (3|7 <«

for some T > 0.

(C) The matrix

—\2 2

NG “D( s

'-WE#) By (B(x)) + ge-Tg“é—)? 1,3 = 1,000k
iy - i 7]

is positive definite, where 9§ = (91,...,9k).

-



Lemma 1.1. Given Assumptions A

number S such that

E [ Jlnf

whenever || 8" - Q_'H <v

o

2
>:|<S<00,r
'

7

and B, there exists a positive real

£ Proof': It follows from Assumptions A and B that
2 2
e[ <alnf’ 9> 1 = 'Ee[ . = eJ <1f <
Z- d6 =
r
for all 9eQ. Now consider the Taylor series expansion of alnf/aer g
about 6 = ', namely
dnf|  _ dlnf : (o1 - o) 3 1nf
591, _9_" 591‘ -9_| s=1 56 59 9"'
where 6'" lies between ' and 9". Thus
k 2 2
alnfl [ d1nf 3 1nf
E, ( —E + T (9"'9')3_T >]
’_ 9' s=L S 8799, Blgn
k 3 52
< 5, [ @ Vo2 F v ol 2 2| ]
- 9_ 6' s=1 r IQ' r s'g™
s 3 ler-er]fer - o:l]s [ St | unr | ]|
Sy 421 s sVt T Ut Perl 3530 |9,,, 369 |9,,,
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It now follows from Assumption B and the application of the Cauchy-
Schwartz inequality together with the first part of the proof of

this lemma that

2
\E d1nf| d”1nf | ] ‘

o'l 3,14, 39, 98 | g

< {Ee.r C:Blnf j) } r <§§E;5£— >2]}l/2< TB/M for r,s 1,..,k,
9"!
and
2 2
555, w5,
2 2..1/2
<[ (o] 1o (8] T <

for r,s,t = 1,...,k whenever || 0"~ Q'H < v,. Thus

E Blnf ;> ] < T + 2\)2T5/LL + VgT =8 <
k
whenever ” o' - 9'“ = % |9" -0 <wv..
- - r=1 r r' - 2
Lemma 1.2, Let
Y r dlnf _
Ar(_;_e_ ) =F VoS . , r=1,...,k, (1_2.1)
- r

., k. (1.2.2)
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(Note that from Assumption A2 Brs(_q,g) = -Crs(g).) Then under

Assumptions A and B, for r,s =1,...,k

P

i for all 6,6',8"<Q where || 6-0"|| < 1/2v., and v, is given by
222 =2 2 2

Assumption B, Ar(g,_e_") and Brs(g,g") are continuous at 8" = 9",

(ii) Crs(_@_) = -Brs(g,g) is continuous in 0.

Proof: (i) Let e be an arbitrary positive real number. Tt must be

shown that there exist positive real numbers 61 and 62 such that when

lom-orll <&, W, =[a.(8,6") - &(8,8")] < ¢, and when

l’W

lem-e'll<s,, v =18,(8,8") -8 _(8,6")] <. Now

1"

= |a_(8,8") - A (8,8")] = IJ dlne

Expanding f(x,8") in a Taylor series expansion about 8" = 8' one
obtains
dlnf| Jlnf
W, = Z (9" -61) I 5, Txom)ax
8 s 8"
for some §"' such that || g™ -o'||< || e"-6'|] . Now if || 6"-0'||< 1/2v,,

H am -_9_'“ < 1/2\)2 and, since || Q-Q'H < 1/2\)2 by assumption, then

H " -8 || <wv Thus it follows from the Cauchy-Schwartz inequality

X
and Lemma 1.1 that

W< 3 |er-6!
s=1 8§

2 2
> £(x,0"")dx
g - -

k { [ (3Lnt
s o R
R r

;) £(x,0™ )dx J alnf

< 81/2 Tl/2 H 2"'2'” .
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1°

Thus if &, = min(eS-l/gT-l/g,l/Evg), then W < e whenever llem-e'll< s
Similarly,

v. =|B__(8,8") - B_(6,0") = ¢ ine {f(x,0")-f(x,0')14d

rs = 1Bpg(@,87) - B [(8,87) = JRBEFQ—SG %,0")-f(x,0")1ax

k
3°1nf | dlnf|
=z 9"—9 ) J f(x,8")dx
l t) ) 36_ 06 o 59t'g"' %2

for 8" such that || 6™ -0'|| < |[¢"-0'|| . Wow ir || 8"-6'|| < 1/2v, then

H am -g” <v,, SO that it follows from the Cauchy-Schwartz inequality,

Assumption B and Lemma 1.1, that

Vrs-—<- Jle- 9'\If<alnf.6>f(xe"'

) £(x, 0™ )dzﬁ/g </ el

I <51nf

91'1

Thus if 8, = min(eT'B/l‘,l/zvg), then V__ < ¢ whenever || 8"-0'[| <&,.

(ii) Let e be an arbitrary positive real number. It must be
shown that there exists a positive real number 3 such that when
" — [P - ' LA .
fer-ell<s, u, =lc (87)c (@) =B, (8',8")-B (8,8)] <

By the triangular inequality

U, < B (87,8")-B, (8,6")] + |B_(8,8")-B,(8,0)]-

From Part (1) of Lemma 1.2 there exists a 62 such that the second term

on the right-hand side is less than ¢/2 whenever || _6_'-9“ < 5,-
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Now use of a Taylor series expansion of aglnf/aer BGSIQ, about 8' = 0,
leads to
k 5
1 1y _ 1 — [ r a 1nf t
lBrs(Q ,6") Brs(f?_;_e_ ) til(et Qt)u‘ m‘ "f(ﬁyﬁ )dx
R T s t'e

A

for some 6" such that || 6"-g|| < || 8'-6|| . Then by Assumption Ak

k ~
13,2808, (8,80] < 2 fop-o,lE,,!

3 1nf ]
36_ 06 30, | .,
r s t g

<wuflor-9]] .

Let 85 = 1/2 L. Thus if 5 = min(62,65), then U < e whenever

fer-ell <s.

1.3 Asymptotic properties of null and non-null
maximim likelihood estimators

Consider the test of the composite hypothesis,

. _ g% _ °
H: 8 =0"=(,8%.9)
where Q&%Q and where lgo = (6;,...,60) is specified while

29 = (9£+1""’9k) remains unspecified. Attention is restricted to the

following class of local alternatives: {QF}, a sequence of "true"

Il

*
values of 0 such that 6" = (lgn,gg ) where eril 0 + 85, / A with

*
i=1,...,2, and where 6 1s the vector of true values

lim 3 =93 o2

n - o in i’

*
of the nuisance parameters 0. Setting 6§ =

6°, 6" that
8- o8 ) one sees tha

(,8
*

lim 6" =9 .

n—->o -
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Henceforth the notation a = (lg,gg) indicates a k-component
vector whose component-vectors ,a and ,a have ¢ and (k-£) components

respectively and a matrix

-11 =12

~21 =22

indicates a k X k matrix whose principal submatrices A . and A_ . are

=11 —22
4 x £ and (k-£) x (k-£) respectively. In addition, if B = A"  has
similar submatrices B,., write A?% = B, ., and BT} =A_, in order to
=ii —-ii =i =i =it

distinguish between submatrices of inverse matrices and inverses of

submatrices, 1 = 1,2.

Denote the joint likelihood function by

n
o(x,6) = I f(x ,0).
e

Then the likelihood equations under alternative and null hypotheses

respectively are the following:

e9) 0, r=1 k (1.3.1)
'y =0, r=1,...,k, 3.
r
SECIEN
Y =0, r=20+1,...,k. (1.3.2)
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The following notation is introduced for use in subsequent

sections.
Alnp(x,9) n Jlnf(x_,6)
n 1 22 1 Lo
L()y=2—"oo" =2y L= =1,...,k, (1.3.
r(__) n 59 n O[:l 66 2 r b4 < 5 5)
T r
o 1nw(x,0) n O 1nf(x ,0)
n 1 == 1 A
L (9) = = = - > T——-r—, I‘,S:l,...,k, 1.3.)4
rs'=) "W 0800 n §_ 00 ( )
BBln@(x,Q) n 551nf(x ,0)

n 1 =/ 1 = .
brst(2) <R S, h oLy Be e da DL ke (1329

Lemma 1.%. Under Assumptions A and B, for the given sequence {Q?}

and any ¢, 1 > 0, the following hold for all § such that || 6-9"|| < 1/2v,:

Il

*
(1) P PEILE(Q) - A (8,8 )|<n, for all r=1,...,k|8"]>1-c,

(i1) B, = B[|12 (9) - B_ (9,87 )|<n,

I

for all r,s=1,...,k|8%] > 1-¢, for n > N(e,n).

Proof: For the given sequence {Q?}, one can find for each o > 0O
n _*
a positive integer N(a) such that || 8°-0 [| < o whenever n > N{o).
(1) By the general form of the Tchebyshev inequality, the
triangular inequality, the definitions of Ar(2’9?> and L?(Q) given

in equations (1.2.1) and (1.3.3) respectively, and for any n>0



1k

k
P2l % P[|L0(9)-A (8,0 ") > n|e™

n Ty ,2 n %42
e B L0048 + [0, 84, (0,80)]
>1 - =
- r= 2
n
*
el Q?-Q_Ili l/2v2 then ” -9|| < v,. Thus by Lemma 1.1

n n,,2 1 Olnf n\1°
EAONNCED SRS LIS RCE: )} ]
1 E Blnf ;) <8
- n n

for n > N(l/2v2), and by Lemma 1.2 there exists a positive real number
B, such that for I gn-_e_*ll < B, [Ar(_e_,gn)-Ar(g,_e_*)jg < 1/2 eng/k. Thus,
if n>ma.x[28k/en2,kl\l(]/2v2), N(al)], then P[\L?(Q) -Ar(g,g*)\ > qlgn] < ¢
for any small e¢ > O and hence Part (i) of Lemma 1.5 follows.

(ii) By the general form of the Tchebyshev inequality, the
triangular inequality, the definition of L?S(Q) and Brs(g,gé) given

in equations (1.3.4) and (1.2.2) and for any 1 > O,

k k

* n
P.>1- 3% % Pl L e -B. (6,0 > nlo
pz1- 2 2 |z, (8)-B..(8,8)] >nle’]

r ok EGnHL;lS@)-BrS(g,_e_n)}QJ + [B,(8,6%)-B,4(8,0)T
>1 - % % —

- _ - 2
r=1 s=1 7

-
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Now if H QF-Q*H < 1/2\)2 then H -6” < vy Thus, by Assumption B,
2 2
n Ny, 24 _ 3 1nf n
B [(15(@)8,, (0,801 -1 % H 1, a2 )]
2
Jlg a 1nf ‘f) g
-n 6n

for n > N(l/2v ), and by Lemma 1.2 there exists a positive real number
n ¥\ 42 2.2
5, such that for || g "o < 85, [B,,(8,87)-B, (0,07)]7 < 1/2en™/k".

Thus if n > max[BTk /€n LK N(1/2v2),N(62)], then

k k
n * n
P,>1- % zl Pl|1, (8)-B, (8,67)] >n|e" 1 >1 - e

r=1 s=
for any small ¢ > O and hence Part (ii) of Lemma 1.3 is proved.
The following result is a restatement of Lemma 2 of Aitchison

and Silvey [1958, p. 819] and is thus given without proof.

Lemma 1.4, TIf g is a continuous function mapping Rk into itself with
*
the property that, for every 6 such that ||9—Q ” =%, >0,
k * . . A A~ *
zlgr(e)(er-er) < 0, then there exists a point & such that || 8-6"|] < 5
r= - - -

for which §(§) =

Theorem 1.1. (The consistency of the two estimators @,@.) Given

Assumptions A and B and the given sequence {Q?} of local alternatives,
(i) +there exists a sequence {@P} of solutions to the likelihood

*
equations (1.3.1) which converge in probability to 8 ,
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(ii) there exists a sequence {@P = (19?’2§)} of solutions to the

*
likelihood equations (1.3.2) which converge in probability to 6 .

Proof: (i) Consider the likelihood equations
n
Lr(_Q_) =0, r=1,...,k,

obtained from (1.3.1) by dividing through by n and noting the definition
of L?(Q) given in (1.3.3). Tt follows from Lemma 1.3 that given n and ¢,
arbitrary positive constants, there exists a positive integer N(n,¢)

such that, for all 6 such that || 6-6"|| < 1/2 Vo
P[|L?(§_)—Ar(g,g*)| <, forall v =1,...,k[8") > 1 - ¢

for n > N(n,e). Thus with probability greater than 1 - ¢ the following

hold for n > N(n,e) given QP:
n *
|10(0)-2_(8,6)] <m, T =1,...,K

(10(8)-4,(0,6)}(6,-6.) < 6 67|, v = 1,...,K,

k k
n * * * *
2 p(0)-8,(8,8030,-0,) < = 10,0, =lle-o7l] .

Now, for each 6 such that || Q-Q%II: & < 1/2 v,, one has

k n * k * *x
L (8)(8 -8 )< = A (9,0)(0 -0 ) + mp.
-] T r r r=] * == r r



-

-

LY

17
*
By expanding Blnf(-}f,_e_)/aer in a Taylor series about § = 6 in the

* * %
expression for Ar(9’9 ), noting that Ar(-e— ,0 ) =0, multiplying by

*
(er-er) and summing over r, one may obtain

k k k
* * * * * ¥
ZA (800 = 5 5 (0,-6)(5,-0,)B, (7,07
k k k
1 * * * n .
+ 2 ri]_ sil til (er-er)<9s-es)(9t-9t)Ee*[Lrst(-9— )]
* * *
for some 8' such that H 6'-6 || < HQ-Q H . If || 6-6 H =35 Svys
then, by Assumption Ak,
k k k
* * * * * ¥ 3
IElAI‘(-e-’9 )<9r-9r) = ril szl (er—er)(es_es)Brs(—q ’2 )+ 1/26 M.

* ¥
In addition, from Assumption A2, the matrix [Brs(g ,07)] = [-crs(g*)]
which is negative definite by Assumption A3 so that there exists a
B > O (namely the characteristic root of the matrix [Brs(g*,g*)]
which is smallest in absolute value) such that

k k

* X * ¥
sz (6.~ )6 -0 )B (6,0) < -662.
r=1 s=1 r r 85 8 rs="-—

Thus for || g-_@_*ll =8 < min(vl,l/2v2) one has

K n * 2 3
%L (8)(6_-6_) < -Bd° + 1/28”"M + 3.
r=] r— r r
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Thus for arbitrary n < 1/262M

k
n * 2 3
I L.(8)(6,-6.) < -B& + &M <O

if & < min(Q/M,vl,l/2v2). One may now apply Lemma 1.4 to conclude that
P[Lﬁ(g)] =0, for all r = 1,...,k for some @P such that

| 8%-6"| < 8161 > 1 - € for n > N(n,e).

Thus there exists a sequence of roots {Qn} to the likelihood equation
(1.3.1) with probability greater than 1 - ¢, for n sufficiently large,
in the region H én_g*” < 3. Since ¢ and ® are arbitrary and may be
taken small, {/Q\_n} converges in probability to Q*

It remains to show that the sequence {_é_n} of estimators are
maximum likelihood estimators. By Lemma 1.3 there exists an N(e,n)

such that whenever || Q-Q*H < 1/2\)2,

*
P[lL;ls(_Q_)-BrS(Q,_G_ )| < n for all r,s = l,...,klgn] > 1-¢

for n > N(e,n). In addition, it follows from the proof of part (ii)

* *
of Lemma 1.2 that Brs(g,g ) is continuous at 6 =8 , r,s =1,...,k.

* ¥ *
Since the matrix [Brs(g ,0 )5 r,s =1,...,k] [-crs(g ); r,s =1,...,k]

is negative definite by Assumption A3, one can find a v, such that the

3

*
matrix [Brs(g,_@_ y; r,s =1,...,k] is negative definite for all 6 such

that || Q—Q_*H <v, < 1/2\)2. Thus, one can find an N_ such that,

3

-

-
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whenever || 0-6" || < v

5)

P[the matrix [L:S(g); r,s =1,...,k] is negative definite] >1l-¢

for n > Ne, so that with arbitrarily large probability éé yields a
relative maximum and thus is a maximum likelihood estimator.
(ii) A parallel argument suffices to show that there exists

a sequence of roots {Q?} to the likelihood equations

Lr(_G_w) =0, r=14,...,k
*
which converge 1in probability to 8 , where it is recalled that
A ® * o _
6 =.,6"=_.6 = _6" by definition.

1— 1- 1- 1

Lemma 1.5. Under Assumptions A, B, and C, and given the sequence {Qé},

I

the vector XF(QP) = [Y?(Q?); r=1,...,k] = [ /n L?(Q?); r=1,...,k]
has a cumulative distribution function (c.d.f.) designated by Jn(z) such

that

lim 7(y) = n(y;6,C)

n— w

where n(y;6,C) is the multivariate normal c.d.f. with mean vector O

*
(8); rys =1,...,k].

and dispersion matrix C = [Crs

Proof: 1In the proof given here it will be demonstrated that Assumptions
A, B, and C suffice for the multivariate limit theorem given by

Bergstrom [1963, pp. 320-321]. A special case of this theorem is now
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restated in a form which is more suitable for the present context:

Let {_qan} and {Kan}, o =1,...,n be sequences of
k-dimensional random variables having c.d.f.'s {Fn} and
{Gn} respectively and zero expectations, n = 1,2,....

A n"n n*n e
Then the n-fold comvolutions {F® 1} and {GP "}, the distri-
but i £ 3 ™ ana 3 v tivel at
utions o otél U an czél v respectively, converge
all points of continuity to limits and these 1limits are
equal if and only if the following sets of limits exist

and satisfy the conditions below.

(1) For each n = {n, ...,n,} where N, >0, r=1,...,k

lim n P[|U7]| > n; for all r = 1,...,k]
n - o T r

= limn P[lV?‘ >mnj for all v = 1,...,k]

n — w

(ii) 1lim nj uran(E) = 1lim njl vrdGn(z),

n — o© n — x

o, <y lv <y

(iii) 1lim n j uruSan(E) = limn f vrvsddn(z),

n — o n — o«

lu 1w f<y lv, s lv ]y
for r =1,...,k and r,s = 1,...,k respectively.

The following correspondences will be made in the application of

this theorem. Let

n _ _-1/2 Jlnf| _
Uil—n &q‘—n,r—l...

-
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n n n n,.n
Then Y?(g ) = o1 UZ =J/n LI(Q_), r =1,...,k. Suppose that

o) .
5%33 o T =1,-..,k, have joint c.d.f. H'; it is known that
r '0
dlnf _ . .
E W\ . =0, r=1,...,k, and that the variance-covariance
0 r

matrix of the k random variables at g = QP
n
U= T

», @ =1,...,n, have the k-element multivariate normal c.d.f. with

is ¢(9"). The c.d.f. of

1,...,k] is then F'(u) = H'( /A u). In addition, let

. . . -1,.,.n
mean vector zero and variance-covariance matrix n "C(67), and let
n _on
W= 5V
Z 2y L

It will now be shown that Assumptions A, B, and C are sufficient

for conditions (i), (ii), and (iii). Consider first the sequence {F}

k -
(1) nP[|U3n|>nr; for all r==l,...,k|9?] Zl !‘Uan|:>q |9 ]
r=] -
k
_ alnf ' 5> 1/2 : |9n]
r=1 - rl o™ r=
. [|omr ]2+n2
k gt 59r ot X k -g-ﬁé
<n y—= S < = I
- = r—=
r=1 (nl/gnr) 2 17, .

by a form of the Tchebyshev inequality and by Assumption C, where

ﬁé denotes the constant of Assumption C. Therefore,

lnnnPHﬁx|>T];fM'ﬂlr==L.”,HQE]=

n — o
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(ii) n[ uran(E) = nJ urd}[ll(ﬁg) = -n J urdHn(ﬁ u),

lu |<v lu_|<v lu,[>v
the latter form following since E <Blnf} n> . Set tr = ﬁur
and
n judF u)<ff |t e (t) < o/m J .| <J—J-> 261{“(1:)
lu <y [t |> vay lt, |>fv
X
< — — by Assumption C.
nl/gng Yl+’r]2
Therefore,

lim n I uran(E) =0, r=1,...,k.

n-

lu_[< v
(iii) It will now be shown that

. n *
nl})m00 nJ v u dF (n) = Crs(g ), r,s =1,...,k.

lu |, fu <y
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Now
n j wu a'(w) = n | wu a® (/)

‘ur‘,|us|§\( |ur|,‘us|§\{

=n I urusde (Vo u) - n‘f uruSde (Vo u)
P lu < v, Ju_|> v

-n J urusdHn (fou) -n J urusdHn (Vo u),

[, [>v, |u_f<y lu 1>, Ju_|>y

where Ek denotes k-dimensional Fuclidean space. Then, using (ii)

of Lemma 1.2, one obtains

n-—>°0E n - w

1im nj uu dF(u) = lim f t_t dH(t)
r s — r s -
k By

. n *
lim Crs(g ) = Crs(g ), r,s =1,...,k.

n—>ow

An examination of the second integral on the right-hand side of the

expression above yields

v

n I uruden(g)|§ vn r lus|an(E), r,s =1,...,k.

fl<vlul>y  ful>y
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From the discussion in (ii) above, the right-hand side can be made

arbitrarily small for n sufficiently large. Thus

lian1uuan(u) = limnjuudHn (au) =0, r,s =1,...,k
n - o r s - n - o r s -
lu [< vs lu > v lu 1< v, lu 1>y
Similarly
. n .
lim nJ u u dF (u) = lim nj urusdHn (auw) =0, r,s =1,...,k

n —> w n = o

lu 1> v, fu < v [ 1> v, lu f< v

Finally, it may be seen with the use of the Cauchy-Schwartz inequality

and Assumption C that

n uruSan(E)‘ o P A 2>‘

‘ur‘,|usl>\( |ur|,‘us|>Y

<[] wfar w2 e mw]”

ol lu,|> v o], lu|> v
] 2wl 1] farw]”
RN - PR N
+n, 1/2 +7 1/2
et [ w1 e ]
Y22 o
ltr|>ﬁy Its‘>,\/ﬁ-y
K

< —T—_—
nl/ 2o =
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Therefore

lim n j uruden(E) = lim n‘f urusdHn (Wfau) =0, r,s =1,...,k.

n — o n - o

lu,ls lugl> v gl lugl>

Combining the four integrals one obtains

lim n I uu dF(u) = C (9*
TS - rs

), r,8 =1,...,k.
n - o

<Yy

lu, | fug]

Now consider the sequence [Gn} of normal distributions
{nlv; Q,n—lg(gé)]}. It is clear that the existence of third absolute
moments implies that the limits corresponding to (i), (ii), and (iii)
exist and equal zero, zero, and CrS(Q%), r,s =1,...,k respectively.
Thus the conditions of Bergstrom's theorem are satisfied and hence
{x"(e™)} and {¥"} have the same limiting distribution. But W" has
the multivariate normal c.d.f., nlw; 6, g(g?)} with limit, n[E;Q,g(Q%)],
as n - «, through the continuity of Q(Q?) as established in Lemma 1.2,
(i1) . Hence

lin y) = ly; 0, c(@)1.

n —> o«

n

rots 25 defined in (1.3.5)

Lemma 1.6. Given Assumptions Al and Ak, L

has a 1limiting bound in probability; namely, for any ¢ > O

P{|1) .| <M; for all r,s,t =1,...,k[6"} > 1 - ¢
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for n sufficiently large, where M is the positive constant introduced

in Assumption AL.

Proof: By Assumptions Al and Ak

l rst| =ng2

for all 6 ¢ Q.

Chanda [1954] considered a sequence of independent and identi-
cally distributed random variables so that the existence of the mean
of Hrst(z)'was sufficient to conclude that

p lim |2 (x,) - BlH_, (0} ] = o.

n - o nalHrSt

However in the present situation there is a triangular array of
random variables which are identically distributed within rows but

for which the distribution is changing from one row to the next. Thus
stronger conditions of the type given in Assumption AL appear to be
required.

Tt will now be shown that

n
p lim [ n a—l rs‘l:(X ) - {Hrst(z)};

n-—®

for all r,s,t = 1,...,k|g?] = o.

This may be accomplished by appealing to the multivariate limit theorem

of Bergstrom, which was restated in the proof of Lemma 1.5, to show
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that the distribution of the vector

n
n 1 . ~
z=[ B oDy Trst(®) T B I ()5 vt - 1.k

converges at all points of continuity to a distribution having all its

mass concentrated at zero, namely,

0 if any z,. <0

st

1 if all =z >0 .
rst —

G(z) ={

The application of this theorem requires a demonstration that
Assumptions Al and A4 are sufficient for conditions (i), (ii), and (iii)
of Bergstrom's theorem. Let the following correspondences be given.

Setting the wvector

rst

U"‘n:fl(H )-E6 B ()}); r,s,tzl,---,k]

an
one obtains z% = 5 U . Also let V , ¢ =1,...,n have the c.d.f.
2 ozl = AS

G of the point mass distribution given above for all n. Consider

%
first the sequence {F'} of c.d.f.'s for U B a=1,...,n.
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(1) n P F\Uant\ >, for all r,s,t =1, ,k\gn]
k k 5P
S rZ=1 sz——ll Z P" anstl z T]rstl ]
k k k
- ril sil ‘tEl F [‘Hr t(zoc) E n{ rs t(x)H > Rl tl ]

X k k Qn i n rst
< n z =
- r=1 s=1 t= l+ﬁl l+T]l
n N
rst

by a form of the Tchebyshev inequality and by Assumption AL, Therefore

n
nlimco n P i_| rst > n,qi for all r,s,t = 1,...,k|8 ] = 0.
.. n 3 n
(11.) n] urstdF (u) = - nJ urstdF (u)
|urstls Y lurst|> Y

since the integral over the entire range is zero. Now

n

o] ] b2 Y <

1
Y
lu’rstl> Y |u'rst|> Y (n )
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by the definition of u, and Assumption A4. Therefore

st

. n
nlimoonj U OF (w) =0, r,s,t =1,...,k.

‘u'rst‘E A

n
& J urstur's”c'dF (E)‘

|urs’cl’lu‘r's't'|E Y

(1i1)

< bl 2wl (]l atw]

| |u

Y L WU P L R

by the Cauchy-Schwartz inequality. Now

2 n 2 n
nj urstdF (P—) = nJ urstdF (E)
lurstl’lurlslt!liy Iurstliy
Then, if 0 < n, < 1, one has u2 = Iu ‘l+nl|u |l_ . so that
? 1 ? rst rst rst ’
over the region of integration
1-1 L l-n, 7
2 1 1, 1
nJﬂ w  IF (1) < nv J ‘urst‘ daF (u) < Ly /n
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again by the definition of u and Assumption Ak. Hence

rst

1-n,
2 n 1 1
n J u_  AF (u) < Ly /n

lurstl"ur's't'lE Y
and thus

. n
lim J urstur's't'dF (u) =0, r,s,t =1,...,k.

n - o

‘urst" ur's't'liY

Now consider the sequence an} a=1,...,n, of random variables
having the point mass distribution for all n. It is clear that the
limits corresponding to (i), (ii), and (iii) exist and equal zero.
Thus the conditions of Bergstrom's theorem are satisfied and hence {ZP}

converges in distribution to the point mass distribution, or equivalently

plimH;lH

n
x)-E {H x)}|6 ] =0, r,s,t =1,...,k.
n - o o oy=] rst(—a> en rst<—)}|— PR R b »

Now

P[ILI;Stl < M; for all r,s,t = l,...,k\?_n:!

v

1 n n
I{ n ail Hrst<5d) < M; for all r,s,t = l""’k‘g J

n
2 P{I%<x£1 Hrst(zd) - Een{Hrs‘c(zi)}|< M-Een{Hrst(E)};

for all r,s,t = 1,...,k|enj.
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By Assumption Ak, EG{Hrst(E)} < M for all 6 ¢ Q, and by the demonstration
above, the final probability can be made arbitrarily close to unity.

Hence, for any € > 0
P{IL?St‘ < M; for all r,s,t = 1,...,k|6"} > 1 - ¢

for n sufficiently large.

Lemma 1.7. Let {E?} be a sequence of parameter estimates in Q which

~ *
converge in probability to 6 wunder the parameter sequence {Qn}. Then,

given Assumptions A and B and the sequence {QP},

. n ,an n *
P lim [Lrs(g )lg ]=-c_(0), r,s =1,...,k.

rs
n —> o

lad *
Proof: Consider the Taylor series expansion of L?S(QP) about 8 =6

k
n ,ny N * ~n * n .
Lrs(9 ) = Lrs(g ) + tEl (et Qt) Lrst(g )
* ~Nn *
for some 6' such that H or -8 ” < H g -0 H . Then from Lemma 1.3

. n * n *
p lim [Lrs(g MES J = -crs(g ), r,s =1,...,k

n - o

while from Lemma 1.6, List(gf), r,s,t =1,...,k, has a 1limiting bound

[ *
in probability for all 8 ¢ Q. Since p lim [{8" - 87}|6"] = o, it
n -» o

then follows with the use of Slutsky's theorem (cf. Cramér [1946],
P. 255) that

k
p lim r z

~T * n n
Lz (et - Gt) Lrst(g')lg } =0, r,s =1,...,k.
n > =
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Therefore, a second application of Slutsky's theorem gives

. n ,an n *
p lim [LTS(Q )& ] = (@), rs=1,...,k

n-—-> o

Theorem 1.2. (Limiting normality)

Let /Q\_n and -g_n be the two sets of estimates of Theorem 1.1. Let the
* * -

matrix ¢ =C(0 ') = [Crs@ ); r,s=1,...,k], 2 =C 1 and
8 = (61,...,62,0,...,0). Then under Assumptions A, B and C, and for
the given sequence {Qn},

A *
(i) /n (_8_n- 6 ) has a limiting multivariate normal distribution with

mean & and variance-covariance matrix 3,

~n X%

(ii) /n (22 -8 ) has a limiting multivariate normal distribution

with mean ,@ and variance-covariance matrix _2_22.

*
Proof: First consider a Taylor series expansion of Y;l(g ) about ngn.

*
Since 92 = Gr, r=4+1,...,k this expansion is given by

£

*y _ Jnan * n\.n ,n B
Yo(67) = Yo(e") +/n 2 (60 - 0 (M), r =1,k
for some §n such that H gn - Q*H < H 9_* - ?_nH . Now 1lim Qn _ _6_*

] *
implies 1lim gn =6  so that it follows from Lemma 1.7 that

n - o©

*
(6 ), r,s =1,...,k.

. n anyang _
p lim [L (67)]e7] =-c, (8

n —» o
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Thus, it follows from Slutsky's theorem that
£ £ k

. ¥ NN oany.n *y *
D nlimw[fn SE (QS- es)Lrs@- )& ]—SEZJ:LBSCI.S(_Q_ ) —S§l6scrs@- )

r,s =1,...,k.

By Lemma 1.5, Y'(6") has a limiting multivariate normal distri-
bution with mean vector 6 and variance-covariance matrix C. Hence it
follows from Lemna 1 of Chiang [195, p. 338] that [Y2(8"); r=1,...,k]
has a limiting multivariate normal distribution with mean vector 5 C

and variance-covariance matrix C.

. . . n,, % n
(i) Consider now the Taylor series expansion of Lr(g ) about 8 =6
so that
2 (e™) = . @™ - oI (™), r =1 k
r_)——sil s T Us/trsr 2 V0 T T %
~1 ~T * ~n *
for some 6 such that H g -8 || < “9 -0 || . Now by Theorem 1.1,

A * ~ *
p lim [en‘?-n] =8  so that p lim [7]|6"] = © . Then by Lemma 1.7

n —»> n - ©

. n ,an.an *
p lim [Lrs(g 6] = - Crs(g ), r,s =1,...,k.

n -«

Therefore

Deg®y = . % - eV (o (1)}, r=1 k, (1.3.6)
Lr(_)_s§l<s- S) rs—)+op s, r=1,...,k, 3.
where op(l) denotes a quantity which converges to zero in probability

*
under {_Q_n} For large n, the matrix [Crs(_q ) + op(l); r,s=1,...,k]
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approaches C in probability and thus may be inverted to give the matrix
* *
[crs(_q ) + op(l),‘ r,s =1,...,k] where £ = [crs(g Y; r,s =1,...,k].

Thus one has

(" - 97 = lz{ 206"y o _(6") + 0 (1)}, r =1,...,k.
r r g=1 S'— sr— P ? ’ ’

After multiplication by /n and use of the definition in Lemma 1.5 that

Y (8) =/n13(8), s = 1,...,k, it follows that

k
/n (911’.1 = 9;(-) = Siersl(g*) {Osr(-e—)*'*' Op(l)}, r=1,...,k. (1-57)

Tt then follows from Lemma 1 of Chiang [1956, p. 338] that /n(8"

]
[k
~—

has a limiting multivariate normal distribution with mean vector

8 C g-l =5 and variance-covariance matrix g-lg g_l = 9_-1 = 3.
£'2 K
(ii) By an analogous argument one can expand L?(g ) about 8 = Qn,
N *
r = 4+1,...,k, to obtain, since e’; =6 = elcj, r=1,...,4,
n,. % k ~n *. 1 on
Lr(g y=- = (es - es)Lrs(g ), T = 4+1,...,k
s=4+1
~ Y * A *
for some 8" such that || 67 -9 || < || 6" -6 || . By Theorem 1.1,

A *
p lim [in_gn] =6 and as above one can obtain from Lemma 1.7
n - o

. n &N, .n *
p lim [ (8)]67] = - c_(87), r,s = #+1,... k.

n— ow
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Therefore

n, . * k Qn
Lr(g Y= 3% (8

* *
o2 " GS){CTS(Q ) + op(l)}, r=4+1,...,k. (1.3.8)

*
Now for large n, the matrix [Crs(g ) + op(l); r,s = 4+1,...,k]
*
approaches the matrix [Crs(g ); r,s = £+1,...,k] and may be inverted
— *
to give the matrix [ors(g ) + op(l); r,s = 4+1,...,k] where

- - * -1
&2——R%49),rﬁ::Ml”.”k]=Q£. Thus one has

N k

N *

(92 -9)= 1 L (9 ) + o (1)}, r = £+1,...,k
s=g+1 © P

or, after multiplying through by /n,

A k
~n * n, . *x —_ *
/n (6, - 6.) :s:§+1YS(2 ) {osr(g ) + op(l)}, r = 4+1,...,k.

(1.3.9)

Now QXF(Q%) has a limiting multivariate normal distribution with mean
vector 29 and variance-covariance matrix 922 as it is the marginal
distribution of the last (k-£) components of ZF(Q%) whose limiting
distribution was obtained at the beginning of the proof of this theorem.
Thus again using Lemma 1 of Chiang [1956, p. 338], one sees that

A *
/n ( 2 - 9 ) has a limiting multivariate normal distribution with

mean vector 29 and variance-covariance matrix 222922222 = 222.



IT. ASYMPTOTIC DISTRIBUTIONS

2.1 Asymptotic distribution of —Elnkn

It is now possible to prove the following theorem which is the
main result of interest in this study.

Theorem 2.1. Let {gﬁ} be the sequenc¢e of local alternatives with

x
er}:e‘?+5in/fﬁ, lim &, =056,, 1 =1,...,4, and e?:e

i i in i i’

n-—

*
i=£+1, ...,k where 2@ is the vector of true values of the nuisance

parameters. Let Fz(xg,t) be the distribution function of the non-
central chi-square distribution with £ degrees of freedom and non-
centrality parameter XQ. If Kn is the likelihood ratio statistic for
o

7, 8) ¢ Q, then under

testing the hypotheses H : 8 = g@ where QP = (l—

Assumptions A, B, and C,

ln Pl-2lm_ < t]67] = F,(F5,¢)

n-—w®

2 -1 - = . . .
where A~ = .8 Ell lé = lé 9119 if the hypothesis to be tested is
false, and TE: 0 if the hypothesis to be tested is true.

*
Proof: Consider the Taylor-series expansions of ln¢(§,g )

about QP and 67 respectively:

¥ An l k k An »* An x* n Nn
Ind(x,0 ) = 1nd(x,86°) += £ = n(6. -8.)(6, -06_)L. (8,
- = —— 2 r r s s’ "rs'=—
r=1 s=1
* :n 1 k :n * :n ¥, _n %n
n¢(x,8 ) = Ind(x,87) +3 = s nY -0.)(6. -6 )L_(87),
= —= 2 T r s s’ rs'—
r=A4+1 s=4+1

6" such that

for some gn such that Hg? - Q%H < HQF - Q%H and some

36

-
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@ Q

n

i

D >>

n * ” Now

*x zn
-8l < lle” - 7]l where 8" = (,6°, &™)

I

~

~ A *
p Llim [67]6") = p 1im [6™]6™]) = 68" by Theorem 1.1 so that

n -~ n — w

p lim [67]6"] = p Lim (6"/8") = 8" . By Lemma 1.7
n —+ o n — ©
. n /n.i.n . n n n *
p lim [T (87)[67] =p 1im (L (6™)[6"] = - c..(8),
n—‘ [o0] n—’a)
r,s =1, ,k
Thus
“n “n
- 2lnk = 2[1nd(x,87) - 1nh(x,67)]
kK kA R
*
=z za®®-e)e®-ehe (89
r T ] S rs '~
r=1 s=1
k k N N
X ¥ *x
- 3 5 n(ei-er)(en-e)c (87) + o (1).
r=4+1 s=4+1 s 8 T8 p
In matrix form this becomes
- 21nkn =n(8"- 8 )Cc(6-6)'- n(gg - 29 )ggg(gg - 29 )+ op(l).

It has been shown by Doob [1935, p. 164] that, if one has two
sequences of random variables the first of which converges in distri-
bution while the second converges in probability to zero, then the
product sequence converges in probability to zero. Hence, it follows

from Equation (1.3.9) that

>3

n

/n(

D

- 8 = X8 Iy + o (1),

it

and that
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~
A

* n *'
- 20) Gpp(f - 8)

n
n(gg

It

LX) Top + 0p(D)] CpplX'(87) Tpp + 0 (D]

() E ¥(e)) + o (1)

=22 922 222 {2

L0 Ty (X)) + 0 (1)

Now multiplying by /% in Equation (1.3.6), noting that /1 (8" - &

has a limiting distribution by Theorem 1.2, and again using Doob's

result, one obtains

so that

Thus

*

)

" Cin- ~ x. &
- (/A (- 80 [ 0,1 o) 1A (8% - ) [G] + o010 ()

22 —22

-1
. [912 Con So1 0 8907
pod = :

22 21 =22

LN
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Therefore,

- 21 =n(g” - ) [c - DI(E" - )" + 0, (1)

_ n _ 0 _ -1 n Oy
=8G87 - 48018y - Cpp Opp Gy T (87 - 180)1 0 (1)
3 Al a0y =1, 'n oy ,
= n(,9 187 Zi(e - 8"+ op(l)
3 a0 40 n .
=n(,87 - 187 T8 - 187) " + o (1)
Thus
L4 20 (o .
- 2lnh_ = % Zn(e 82) (8" - 82) T__(87) + o (1).
R s s’ Trs'= D

Now, since /m (lgé - go) has a limiting normal distribution with

1

mean vector 16 and variance-covariance matrix .. by Theorem 1.2, it

=11
is clear that
Lok “n NN oy = *
Q= = n(®. -6)(e -8)C_(8")
r r s 8’ “rs'—
r=1 s=1
has a limiting noncentral chi-square distribution with £ degrees of
freedom and with noncentrality parameter
- L 4

. n O\ a2 *N =
A = n]__J:mm IEl SEln(er - er)(es -8 )crs( ) = 12844 1—

Thus, since - Elnkn and Qn have the same limiting distribution in that
they differ only by a quantity which is converging to zero in proba-
bility, one has

lim P[-21nh_ < t]e™] = 7, (77,

L
n - ©
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2.2 Sampling from associated populations

Situations often arise in which observations are made on several

distinct populations which are related in the sense that their under-
lying probability distributions depend on common parameters. Such
populations have been referred to as "associated" by Bradley and Gart
[1962] who have extended the results of Chanda [1954] on the large-
sample properties of maximum likelihood estimators to such situations.
In Section 2.4 of their study, Bradley and Gart have commented that an
analagous extension of the results given in earlier sections of the
present study should be straightforward. That this is in fact the
case will now be indicated.

Let fh<§h’9)’ h =1,...,m, denote m density or probability
functions (continuous or discrete) where %, is a random vector with
values over a region Rh independent of 6§ = (el,...,ek), a parameter
vector lying in a k-dimensional parameter space . Each fh(gh,g)
need not depend on all Gi,izl,...,k. Iet {x ha},a:l,...,nh, be n.
independent observations on X h=1,...,m. Then in the case where
the random vectors X, have continuous c.d.f.s, the assumptions of
Section 1.2 are generalized as follows:

A'l. PFor almost all X, € Rh and for all 6 e

3lnf.  3°Inf ¥ 1nf
h b ona h
6’ 36 50 36 56 00
r r s r st

exist for r, s, t =1,...,k; h=1,...,m.

A'2. TFor all fh(zh,g) that are densities, for almost all x, € R

and for every 0 ¢ &,

(Y8
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A'3.

Ak,

B'

2
d fh

f
< Fhr(zh) and ‘aeraes I < Fhrs(Eh)’

h

36
r

Q

where Fhr(zh) and Fhrs(zh) are integrable over R,
r,s =1,...,k; h=1,...,m. These agssumptions will permit
certain interchanges of differentiation and integration.
For every § € Q, the matrix C(9) = [Crs(g); r,s =1,...,k]
with
m 31nf dlnf
Crsl® = 2 by Eg[ aerh ‘g aesh Ig]

h=1
is positive definite with finite determinant. One defines

m
the constant p, = nh/N where N = 2 n, h=l,...,m.
h=1

For almost all %, € Rh and for all 6 € @

3
| o) lnfh

| 3836 08, ‘ < Bt ()
and

£y [Hnrst(’—‘n>] <My <

and there exists a positive real number ﬂl, such that

l+T]l
Eg [IHhrst(§h> - Eg{Hhrst(§h>}| ] < Lh < e

for r,s,t =1,...,k; h = 1,...,m, and where Mh and Lh are
positive constants, h = 1,...,m.

There exists a positive real number Vs such that whenever

”Q" - 2'“ S\)g) __e_') _9_” € Q)
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Belnfh 2
S ERACERY: ‘ ,,>:|<Th<°°
- rs '6
forr, s =1,...,k, and where Th is a positive constant,
h=1,...,m.
C' . There exists a positive real number ﬂ2 such that
s, | 22
Eg[’_—"_agr |9‘ J<Kh<°°y

r=1,...,k, for all 8 ¢ Q, where Kh is a positive constant,

h=1,...,m.

Subject to Assumptions A' and B', Lemmas 1.1 and 1.2 of Section
1.2 clearly hold for each h, h =1,...,m.

Suppose now that one wishes to consider the following

hypotheses:
w o N *
HO' 8 =8 = (19 ’22) and Hl' 8 = (1_9_ ’29 )
. N o]
with 8, =6, + SiN/‘/ﬁ’ where as n, =N, h = 1,...,m, and N become
large, one has Nlim§6iN = 61, i=1,...,4.

Denote the joint likelihood function by

m nh
Olx, 9) = I T f£(x,8).
n-1 g1 B¢

Then the likelihood equations under alternative and null hypotheses

respectively are the following:

31né(x,8)
36
r

=0, r=1,...,k, (2.2.1)

A8
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31nd(x,0")

——— =0, r=0+1,...,k. (2.2.2)
r

Now suppose that

N( ) 1 d31nd(x,6) 1 o0y Blnfh(xh ,9)
L (8) == -= 5 =z , =1, ...k,
r N aer N hel ol aer
. | 3 Iné(x,8) By Bglnfh(_)_cha,e)
L (Q) =¥ S8 38 TN 2 Z > T,s=1, &,
Trs N aeraes N hel ol Ber
651n®(§,_9_) m % nr (2,,,9)
N8 s -3 5 3 L r,s,t-1
S = = > I, 8,0=1,.
rst N Beraesaet N hel ol a6 aesaet

Then one may obtain the following generalization of Lemma
1.5 by simply noting that a finite linear combination of continuous
functions is itself continuous.
Lemma 1.5'. Under Assumptions A' and B' and for the given sequence

*
(QN}, the following hold for all § such that [6 - 8 || < 1/2 Vo

N m alnf
<l) P lim [L _G_)IQ ] = Z uhe [ ’e:]; r=l,...,k,
N- h=1 -
] m ol lnf
(ii) p lim [L (e 9] = ¥ ukE [ ‘ ], r, s=1,...,k.
N - o hel h™8 Lo6 89 0.

The remaining results generalize directly from those given
in previous sections when Crs(g) as defined in Assumption A3 is

replaced by the definition given in A'3, namely



Ll

m an Mnﬂl m a]nf
@ = % gy [ |o w6 [ = - 7, e [ [o] -
rs hel h™6 ] aes 9. hel h™6 L06 86 2]

These extensions hinge on the fact that one is dealing with finite
linear combinations of quantities which satisfy the assumptions

which were sufficient for the results for a single population. In
particular one has the following generalization of Theorem 2.1.
Theorem 2.1'. Let {gﬁ} be the sequence of local alternatives with
N o

6, =0, + 6iNA/ﬁ, where as n, =y, N, h=1,...,m and N = =,

*
1im 8, .=58.,1=1,...,4, and with ON =6,,1=4+1,...k, where
N - iN i i 1

*
2@ is the vector of true values of the nuisance parameters. Let

Fl(xg,t) be the distribution function of the noncentral chi-square
distribution with £ degrees of freedom and noncentrality parameter
XQ. It KN is the likelihood ratio statistic for testing the

(lgo, 8) ¢ Q, then under

hypothesis Hb: g = g@ where g? =
Assumptions A', B', and C',
Lin P[-21nmky <tlo") = F,(F5, b),
N- =

a — — l | S t
where N = % o s A lé Zy7 lé lé gll 16 if the hypothesis

to be tested is false, and Te = 0 if the hypothesis to be tested

is true.

2.3 Transformations on the parameter space

In the discussion thus far attention has been restricted
to tests of a null hypothesis in which certain components of a

parameter vector 6 have been specified. In this section the
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asymptotic theory will be generalized to tests of a more general

hypothesis of the form
H : Bew
0" =

where w is the space of all e for which there is a transformation

E(8) such that

128 = B(8),..,8,(9) - 27 = (€3,...,89)

where §i,...,§z, £ <k, are constants. In addition the trans-
formation g(g) will be required to satisfy the following peoperties:

(a) There exists a vector
2;_(?_) = (§z+l(g))"':§k(g)>
such that the inverse relationships
Q(g_) = (el(i);---,ek@_))
exist, where § =E(8) = (15(9),2§(Q>>-

(b) The first-, second- and third-order partial derivatives of
er(g) with respect to £ exist, and there exist positive

real numbers Rri’ R and Rr" such that

rij ijh
o8_(€)
'__%EZ; < Rri’
i
3%_(8)
1655353 l < friy

378 _(g)
‘agi CE < Bpign’



L6

those of Section 1.2 or assumptions which imply the same results, then
Theorem 2.1, the main result of interest in this study, may be gener-
alized to the situation presently being considered as follows:

Theorem 2.1T. Let kg be the likelihood ratio statistic for testing

g@ against the local alternatives {5?}, where

Il

the hypothesis Hb: g

n * T .
(lg ,2§ ) € 0, and where the transformation

il

w

g% = (,8°,8) and €7
§ = £(9) satisfies properties (a), (b), and (c¢). Let Fﬁ(fg,t) be the
distribution function of the noncentral chi-square distribution with

£ degrees of freedom and noncentrality parameter XQ. Then under

Assumptions A, B, and C

1im P[-QMXE < t[g"] = Fz(Xg,t)

n-®
2 1t o T T T, T . T1
where X° = 87 £y, ;8 with ;8" = (8],...,8)), 2" =C" and
2. T
T o _1nf -
e R I EEE R
g i7°3'8

The properties of fT(E,g) will now be discussed in general

and then given a detailed development. Let AT, BT, and CT denote

the assumptions on fT(§,§) which correspond to Assumptions A, B, and
C on f(g,g). It may be established, using Assumptions A, B, and C
and the properties (a), (b), and (¢) of the transformation §(8),

that Assumptions AlT, A2T, ABT, BT, and CT are satisfied. However,

< - . e i g T . . o X
it cannot be shown that Assumption A4~ is satisfied in that the
existence of a function ngh<§) corresponding to Hrst(E) cannot be

guaranteed. In the first four sections of this study seven lemmas

and three theorems are given and of these only Lemmas 1.2 and 1.6 and
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for all feQ and r, 1, j, h=1,...,k.
(¢) The greatest lower bound, with respect to 0e, of the

absolute value of the Jacobian

a(gl,...,gk)/a(el,...,ek)

is positive.

The preceding assumptions on the transformation g(g) are
identical with those given by Bradley and Gart [1962, p. 209] and
Wald [1943, p. 463], with the exception of the assumption on the
third partial derivatives of g(g), which have been added.

Under the transformation § = g(g), the null hypothesis Hb
can be expressed as

£°, €

)
H:§ =§£" = (l— 2_)

[e] =

where 2§ is unspecified. As in earlier sections attention is restricted

to the following class of local alternatives: [g?}, a sequence of

"true" values of § such that g? = (lgé
with 1lim 6? = 5?,
in i

* n o) T
18 ) where 8y = €7 + 85 //n
*
i=1,...,4, and where 22 is the vector of true

n-—

. * o ¥ cr s . n *
values of 25- Setting § = (lg ,25 ), it is seen that 1lim " =§

n -

Now the hypothesis Hb: € = 59 and the sequence of local alternatives
{EF} are in the same form as those given in Section 1.3. Again let
f(g,g), the density or probability function of the random vector x,
satisfy Assumptions A, B and C of Section 1.2, and let fT<§’§)’ EGQT,
be the transformed density or probability function where QT, the

Parameter space of §, is the image of Q under the transformation

€ =€(9). If fT(E,g) can be shown to satisfy assumptions similar to
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Theorem 1.1 require the use of Assumption A4. In fact, the proofs of

Lemma 1.2 and Theorem 1.1 only require the property that

Hae 3 ae ',.,]<M (2.3.1)

for all 8', 8" € @ such that [[8' - 8" < v,, where v, is defined in

Assumption B. This condition may be shown to hold in the trans-

formed case for fT(§,§), namely

1nfl ] T
< M D
By Hag % e (2.3-2)
1 " T t 1t T T .
for all €', €" €Q” such that ”S - g | < Vs where v, is such that
l6(E") - 8(E’ N < v, whenever ”i' -g" < vg. Assumption A4 is required

in its entirety in the proof of Lemma 1.6 but it is noted that Lemma 1.6
is used only in the proof of Lemma 1.7. However, if Lemma 1.7T, the
result which corresponds to Lemma 1.7, can be established independently
by use of Assumptions A, B, and C and the properties (a), (b), and
(c) of the transformation (), then Assumption AT will not be required.
That this is in fact the case will be demonstrated.
It will first be shown that fT(z,g) satisfies Assumptions
T T T T

A1, A27, A3", B, and CT, and the condition given by Equation (2.3.2).

Consider the following relationships:

(0%

8
9ln

1 i 06

H
Hy

|
™M=

(2.3.3)

i r

-

Ky
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>
BelnfT _ ; 0 er d1lnf . ; k aer aes B Inf (2.3 1)
ERE, oy T e, T T 1 3%, X, 30,08
and
BBlnfT
3,38 3,
k379 k k k 20,3036, 33
_ 5 T olnf s 5 by 97 1nf (2.5.5)
= 3 I
2 S 1 S Ag 55 n 29,0099
k 3% 29 3 e 30 3 e 39 &4 .2
+ 3 Z[ S S s]Blnf
o0 LR, ag %, T, ag %, + 5 ag 3, 5636 _

By Assumption Al on f(x,6) and property (b) of the transformation
£ = g(g), the above are linear combinations of partial derivatives
which exist. Thus fT(E,g) satisfies Assumption Al .

To satisfy Assumption A2T (5 £) must be such that

T
{%gT < F§(§> and ’

3%¢T

T
5€ 08 j‘ < P

for almost all xeR and every ESQT, where Fg(g) and ng(§) are
integrable over R, i, j = 1,...,k. Now by Assumption A2 on f(x,8)
and property (b) on € = g(g), one obtains, by use of expressions

analogous to (1.6.3) and (1.6.4), that

k
< Z

‘aer
r=1

k
df T
BT’ < I Rnf(®) =T,

ar
0%,
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and
o7 Kk | 3% Kk k96|38 >
l o T \ < 5 r H_a_f_ + 5 5 | r 5 3~ f
agiagj Tyl agiagj r=]1 s=1 aeraes
k k k
< % R,.F(x)+ £ = R_.R ()—F(x)
roy] T T r-1 s=1 T sJ rs

The functions Fz(z) and FEEJ. (x) are integrable over R, since they are
linear combinations of functicns which are integrable over R.
To satisfy Assumption ABT, the matrix

¢M(®) = [€];(8); 1,3 = 1,..0,k] with

T T

T d1nTf d1nf

c..(§) =E ’ ‘
g[ E; g E, SJ

must be positive definite with finite determinant. Now

.

ct.(g) = e aes c,.(9) (2.3.6)
U=y em1 Bilg e e 5T
Then,
¢'(g) =Dc(e)d
where
a0
92[551; g b ]

nee 0(8)
nce C(8)
Assumption A3 and D is nonsingular with finite determinant by

properties (b) and (c), thus QT(E) is positive definite with finite

determinant.
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T . .
For £ (x,§) to satisfy Assumption BT there must exist a

T

positive real number vET such that whenever HE' - Q"H < Vo s

£', E" e QT,

2 T 2
(G )<<

for i, j = 1,...,k. Now, with use of (2.3.4) one obtains

¥ aglnf‘],? )2]

E (it
[ FE e |,
e rNer e I
k39 kK k20 38 o 2
o KZ T alnf’ s s r Vs 3 1nf >]
oD B lgn 38l T L5 T T g Bl 358 g

Due to the continuity of g(g), there exists a positive real number

ng such that Hg' - g”H < v, whenever Hg' - Q"H < ng, where v, is

defined in Assumption B. By multiple use of the inequality

T 2 T2
(= ai) <m X a; first with m = 2 and then with m = k and

i=1 1=1

m = k2 respectively, one obtains
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2
) [Sglaé" ]

IA

D]

oF B: ko9 6 d1nf
o I\ 7, o ag o 36

8

+

~ = l S= l el' ag H ae ae g"

2

) Eg [@%’nr_flg >2]

89

IN

2k Z (ag Bi e"

5 k k <86r
2k- X Z 3E

r=1

+

D [GE )]

K Kk
<2k T Rf_ijs+2k2 Sy RLRLT = U <,

r=1 r=1 s=1 rL s

where the last inequality follows from Assumption B, Lemma 1.1, and
property (b), for €' - "] < vET. Thus fT(§,5) satisfies Assumption
BT.

For Assumption CT to hold there must exist a positive real

number ﬁgT such that

=T

2+ﬂ
]<KT<oo,

E [ BlnfT
§ L] o8,

jum

i=1,...,k, for all geQT. Let

A



0(x,8) = max {'alnf!} .

Then, if ﬁg = ﬁg, one obtains by use of (2.3.5)

where the last inequality follows from Assumption C and property
(b). Thus fT(§,§) satisfies Assumption et

As was indicated earlier, f (5 §) does not necessarily
satisfy Assumption AﬁT but can be shown to satisfy Equation (2.3.2).

Note that by use of (2.3.5) one obtains

E r aalnfT |J
t
A EE _g_..l
3
. ' A 1= H
~ py 185FE 38 lgn R LIBE, g
. 1; IZ: k IB@ 56 Betl IE ‘-] 55 l ]
r=1 s=1 t= l lag 8" ag 6" agh’e" 8% - aeraesaetlg"
ko lae 20 % 20 ,agerl 0|
+ X ’ + ’ D
1 s 1 L|3€, 1% 5lgn agh 8" o, ag g ag 0" la*;jaghlg.. € [gn

g [ Bglnf( U
p! 3836 | n
- r s60
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where 8' =

|@

(E') and 6" = §(E"). For all E°, Q"GQT such that

ler - g"| < ng, where by the continuity of g(g), ng is such that
" T

g -g"l <v

5 implies Hg' - Q"H <v,, one has
S 3. T k kK k k
Egvugg%én—gg H< TR s¥/2 . s 5 ¢ om R_R_ M
2 1°55%n'g" r=1 r=1 s=1 t=1 J
k k
+ 2 L [R, R, +R_ R+ Rr.hRSi]Tl/2
r=1 s=1 J 8 SJ J

by Assumption A4, B, Iemma 1.1 and property (b). Thus fT(_,g) satis-
fies Equation (2.3.2).
Finally, consider Lemma 1.7T which is to be proved independently

by use of Assumptions A, B, and C and the properties (a), (b), and (c)

of the transformation £(8).

Temma l.?T. Let g? be a sequence of parameter values in QT which
*
converge in probability to £ under the sequence of local alterna-

tives {g?]. Then given Assumptions A and B on f(x,0), and properties

(a), (b), and (c) of the transformation § = E(9),

T

. n- 2N, |-n T % L os
D n%f?m[Lij (€ )|§ ] = - Cij(g Y, i,j =1,...,k
where
2 T
T~y on 3TInf(x,,8)
LiED =5 2 —=¢ .
a=1 1%
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‘e

Proof: Using (1.3.3), (1.3.4), (1.3.5), and (2.3.4), one can write

nT ~n k 9 er n™n k k 06 B@S n ~n
L;.(E7) = = ~ L)+ 22 e = LY (8™
ij o1 agiag ef T rel s_1 agi 9n BEJ. gn rst—
~n ~n * * n n
where 67 = 0(E"). Iet 6 =8(E) end 8 = 8(§"). Then by the
continuity of 8(§), 1 gn = g* since 1lim gn = g*, and
n — o n — o
NPPS N o} LI . ani.n *
p lim {6 Ig}:g since p lim {§ |§ } =§ .
n — « n = m— -
. n/ n, . *
Expanding Lr(g_ ) in Taylor series about § = 6 yields
n’gn ne* k ~n * n n
Lr(_ ) = Lr(_ ) + % (es - eS)LrS(g ), T =1,...,k
s=1
~ ~ * ~ * ~ *
for gn such that ||§_n -6 I < Hgn -0 l. Nowp 1lim {ing_n} =0 implies
n - ©
. ~ni.n *
p lim {6767} =6 , and thus
n-oeo -
. n /n n *
p lim {1 (87) [ 873 =- ¢, (8")
n-—ow
by Lemma 1.7. Also, by Lemma 1.3, one has
* * ¥
p 1im {12(87)[6"} = A (87,8) =o.
n-owo °
Thus by Slutsky's theorem
p lim {12(6™ (6"} =0, r = 1,...,k.
n-oow T
In addition
Lim {12 (00 [6™ = - ¢ (6), r,s-1 k
1Y g 9 rg'= /2 s sy

n—®
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by Lemma 1.7. Using (1.6.6) and Slutsky's theorem, one can conclude that
TN
p lim J;_ )1g") =

n— x

thus completing the proof of Lemma l.TT

This completes the discussion of the conditions necessary
for Theorem 2.lT. The discussion of this section could also be
extended to the case of associated populations and would lead to

the appropriate generalization of Theorem 2.1' of Section 2.2.
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PART 2



ITT. INTRODUCTION

The purpose of this part of this dissertation is to give
possible methods of making decisions about the unknown noncentrality
parameters of noncentral chi-square distributions. In each of the
decision procedures considered, the noncentrality parameters are
assumed to be random variables with continuous distributions.

The notation XQ used for the noncentrality parameter in Part
1 will be simplified to A in Part 2. This simplification is introduced
since the noncentrality parameter is referred to many times in Part 2.

The decision procedures are developed in Chapter IV. In Section
4.2, a two-decision procedure is considered on the magnitude of the
noncentrality parameter )\, where the two decision regions are the two
sets {(A]O <A <7} and {(A\|T <A <=}, and T is a specified constant.

In Section 4.3, two extensions of the work in Section 4.2 are considered.
One extension is the combination of p two-decision procedures on the
magnitudes of the noncentrality parameters xl,...,xp. It

Wy = {(xl,...,xp)|o <Ay <7} andwyy = {(xl,...,xp)lrri <Ay <o),
i=1,..,p, the combination of decision procedures yields 2P possible

b

decisions of the form .N. w,

AN Jii, ji =0, 1, i=1,...,p. This combined

decision procedure is developed through the use of a paper by Lehmann
[1957]. The second extension is a g-decision procedure based on one
noncentrality parameter, giving the q decision regions {X!T§ <A< T§+l}’

i=0,...,9 - 1, where the 7%, i =0,...,q are specified constants,
i b b

58
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such that T? < T§ T* = 0 and Ta = +o, This decision procedure is

+1’ 0
developed through the use of a paper by Karlin and Rubin [1956].

The decision procedure given in Section 4.4 is a comparison
of the magnitudes of two noncentrality parameters xl and kg, through
the three decision regions: (1) ((kl,K2)|Xl > A+ T},

(2) () ry - a ]l <73 end (3) (G A)|h, >4y + 7], where 7
is a finite positive constant. This decision procedure is obtained
through the combination of two two-decision procedures which have
decision regions {(xl,x2)|xl <At T}, {(xl,xg)lxl Zh, t T},

(A A, <Ay + 1) and (A s 22y + 7). In all these deci-

1
sion procedures, the loss functions are assumed to be additive,
continuous and monotone in )\ for each of the decision procedures.

Also when more than one noncentrality parameter is considered, their
distributions are considered to be independent.

Chapter V is concerned with the presentation of aids which
will help the experimenter in his use of the decision procedures
developed in Chapter IV, when a gamma prior distribution is assumed
for the noncentrality parameter. Tables to facilitate the use of the
decision procedures are described in Section 5.3 and are displayed in
the Appendix. These tables give the critical values which are needed
to conduct the decision procedure developed in Chapter IV and they
also give a set of values from which the new approximate parameters can
be obtained, when it is approximated by a gamma distribution.

In order to use these tables, it is necessary to assume that

the loss functions are linear in the noncentrality parameter and zero

when the decision which is made is true. The latter restriction means
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the loss functions are actually regret functions. An approximate
method for finding the optimal sample size for each of the decision
procedures developed in Chapter IV is discussed in Section 5.k.

Chapter VI is concerned with the situation when the distribution
of the statistic of concern is only known to have a noncentral chi-
square distribution asymptotically. It is shown there the risk
functions obtained by using the decision procedure based on the exact
noncentral chi-square distribution converge to the minimum risk funec-
tions of the exact noncentral chi-square distribution.

Chapter VII contains a discussion of two examples of the
decision procedures developed in Chapter IV one which deals with an
exact noncentral chi-square distribution and the other is concerned
with a distribution which is asymptotically a noncentral chi-square
distribution. Chapter VIII contains a summary and evaluation of the

investigation reported in this part of the dissertation.




IVv. DECISION PROCEDURES

4.1 Introduction

This chapter will be concerned with four types of decision
procedures dealing with one or more noncentrality parameters of non-
central chi-square.distributions, three of them will be concerned with
the magnitude of noncentrality parameters in relation to specified
tolerances and the fourth will be concerned with the relative magni-
tude of two noncentrality parameters.

Throughout this chapter, whenever more than one noncentral
chi-square random variable is considered, these random variables will
be assumed to be independent. When U is a noncentral chi-square random
variable whose distribution has noncentrality parameter A and S degrees

of freedom, g(U[)A,S) will denote its probability density function.

4.2 The two-decision procedure

This section will deal with the development of a two-decision
procedure for the magnitude of the noncentrality parameter. This two-
decision procedure will be used to help develop a multiple decision
brocedure for several noncentrality parameters by use of a method given
by Lehmann [1957].

The noncentrality parameter A given in Section 4.1 will be
assumed to be a continuous random variable with cumulative distribu-

o
tion function F(A) :f f(t)dt, where f(t) >0 for te(0,»). The two-

0]
decision procedure 62(U), where U is the noncentral chi-square random

61
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variable to be considered, will have the two decisions
do: XG{K]O <A< T} and dl: ke{k|¢ <A< m}, where T is a tolerance
assigned by the experimenter. The loss function corresponding to

52(U) will be considered to be

where <0, A<T

(D 1,01 - L) = (=0, A =1

>0, A >T;

(11) Ib(X,T) is a continuous non-decreasing function of Ae[0,®)
and Ll(K,T) is a continuous non-increasing function of
re[0,®); w©

(IID) The integral fo Li(K,T)g(U[X,S)f(X)dA exists for i = 0,1;

(V) @O(U) + @l(U) = 1 for all U;

(V) @O(U) has a countable number of discontinuities;

(VD) @O(U) equals one on the open interior of all sets U for

which 62(U) = d, and zero otherwise.

Condition (VI) will not change the form of the optimal decision, since
at most a countable number of points would be excluded and these would
have measure zero. Conditions (IV), (V) and (VI) imply that SE(ED = 4,

when @O(U) = 1 and 62(U) = d, when @l(U) = 1, except on a set of measure

1
zero. The functions Ib(x,T) and Ll(X,T) defined in conditions (I), (II)
and (III) are the losses incurred when decisions d.O and dl are made,

respectively. The restrictions made on Ib(x,T) and Ll(X,T) are reason-

able, since it is desirable that Ib(X,T) be less than Ll(X,T) when

A <71, that is, when d.O is the correct decision, and greater than
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Ll(X;T) when A > 7, so that d, is the correct decision. Similarly, the
assumptions of monotonicity are reascnable since the difference between
Ib(X,T) and Ll(x,T) would tend to be less when the difference between
A and T is small than when that difference is large.

The average risk associated with 62(U) is given by

R(3,,8,7,1) = Jo Uo {L(SQ(U),)\)g(UI)\,S) f.()\)}dU}d)\

The minimum average risk procedure Sé(U) is determined by the form of

g'(U) = (é(;(U),é'(U)) of 2(U) = (@O(U),é (U)) which minimizes R(ag,s,w,f).
Now using the definition of L(SE(U),?\) it can be seen that

(k.2.2)

R(6 S,T,f) j J [L (n,T) - Ll()\,'r)]g(Ul)\,S)f()\)dUd)\ + constant -

To find g'(UL it will be necessary to change the order of integration
in (4.2.2). This can be done by use of Tonelli's Theorem, Royden
[1963, p. 234], since the conditions (II), (V) and (VI) guarantee that
the function @O(U)[Ib(k,f) - Ll(K,T)] will be measurable. Thus (4.2.2)

can be expressed as
[oe]

R(BE,S,T,f) :I [@O(U)H(U,T)]P(U)dU + constant, (4.2.3)
0

where .

BU,7) = | [m,000) - 1,0,m) (D, (h.2.k)

0
P(U) :I g(ulr,8)F(A)ar
0

and

(A\[U) = g(ulr,8)£(0) /P(V). (.2.5)
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Since P(U) > 0 for all U, the form of @O(U) which minimizes (4.2.3) is

the form of @O(U) which minimizes
¢, (W H(U,T) , (4.2.6)

for each value of U. Now it is easily seen that the form of @O(U)

which minimizes (4.2.6) is given by:

(1, H(U,T) <O

@O'(U) - < (%.2.7)
o, H(U,T) >o0.

The assignment of the equality in (4.2.7) is arbitrary, since (4.2.6)

will be zero when H(U,T) = 0, so the equality is assigned as to make
t

@O(U) = 1 only on open sets. This procedure says to make decision

d. if H(U,T) <0 and 4

o if H(U,T) > 0.

1

There are three'possible situations which may occur in (4.2.7):
(1) H(U,T) >0 for all U, (2) H(U,T) <O for all U and (3) H(U,T)
changes sign at least once in the interval (0,®). Situation (1) is when

decision dl is always made, regardless of the value of the observed U

and situation (2) is the case where decision d.o is always made, regard-

less of the value of the observed U, In these two situations no experi-

ments need be performed, since the decision of whether to accept d.O or

dl can be made without further evidence. 1In the third situation, the
decision will depend on the value of U observed. ©So from now on, assume
that situation (3) prevails; that is, H(U,T) changes sign at least once
for Ue(0,»).

Now for the decision procedure to be practical, a value Ub =C
must exist such that H(U,T) <0 for U < C and H(U,T) > 0 for U > C, so

that (4.2.7) can be expressed as
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. 1, U<C¢C
¢, (0) = (b.2.8)
10, U>Cc,

L
where C is such that H(C,T) = 0. The remainder of this section up to
the statement of Theorem 4.1 deals with the use of a paper by Karlin and
Rubin [1956] to show that Equation (4.2.8) holds and may be skipped
without loss of generality by the reader who is not interested in the
details of this demonstration.

Now to verify Equation (4.2.8), use can be made of a paper by
Karlin and Rubin [1956] on decision procedures for distributions with
monotone likelihood ratios. The definition they give for a distribu-
tion to have a monotone likelihood ratio is as follows:

Definition: Let the cumulative distribution of a random varia-
ble x, when the true state of nature is described by a parameter B,
have the form

X

p(xlg) = | p(tlp)at, (+.2.9)

-0

where if Xy > x, and Bl > @2, then the pdf satisfies

2

p(x |B)p(x,[8,) - p(x[B,)p(x,[8)) > 0. (4.2.10)

Any distribution of the form (4.2.9) which satisfies (4.2.10) will be
said to have a monotone likelihood ratio.

The fact that the noncentral chi-square distribution has a
monotone likelihood ratio is known to others, as indicated by Karlin
[1956], but the author has not been able to locate a proof of this

result in print, so consider the proof of the following lemma:
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Iemma 4.1: The noncentral chi-square distribution has a mono-

tone likelihood ratio.

Proof: Consider the following form of g(U|\,S), the pdf of the non-

central chi-square distribution:

wh.s) e-l/2(U+X) o Ul/ES + j-lxj
ulr,s) = 5 :
¢ o178 §=0 T(1/25+j) 31229

Now let Ul > U2 and )\l > )\2 and also let

-l/2(U U, A +l2)

B 1/e8 - 1
I(Ul,Ué,xl,xe) =e (U U /2

and

7(3,%) = T(1/28 + 3) T(1/28 + k) 311 220348

Note that J(j,k) = J(k,j). Then putting p(x|8) = g(U[x,8s),

becomes

g(U 11,,8)g(U,[1,,8) - (U, 8)g(U,[n,,8)

j.. k

U.YU .
3 1 o [ ik _, k J]}
_.I(Ui,Ué,Xl A { by FED) xl xg xl xg .

:Ok:O

(4.2.11)

(4.2.12)

(4.2.10)

(4.2.13)

The double sum in (4.2.13) can be broken into two parts along the

values of j = k. Then by renaming the subscripts and letting o = k-j

for k > j and using the fact that J(j,k) = J(k,j), (4.2.13) can be

reduced to the following:

o (U
1UoM 2 {
I(Ul’UE’)\l’K2) JEO Z: J(3, i+ ()\

(4.2.14)

oc 04
- U, )} >0.
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The strict inequality holds since Ui > U2 and xl > Kg. Thus the non-
central chi-square distribution has a monotone likelihood ratio.

Since the noncentr%l chi-square distribution has a monotone
likelihood ratio and satisfies (4.2.10) with a strict inequality and
since h(A,T) = [Ib(K,T) - Ll(K,T)J satisfies the conditions of ILemma 1
as well as Corollaries 1 and 2 of the paper by Karlin and Rubin [1956,
pp. 276,277], Equation (4.2.8) is the correct form of @é(U). Thus
the form of &(U) = (@O(U),Ql(U»'which minimizes (4.2.2) is given by:

, :/(1,0), U<c
3 (U) = , (k.2.15)
1(0,1), U>c
where H(C,T) = O.\

The above results can now be summarized in the following
theorem:

Theorem 4.1: Let U be a random variable coming from a non-
central chi-square distribution with S degrees of freedom and noncen-
trality parameter A. Further assume that A 1s a continuous random
variable with cumulative distribution function F()) :jgf(t)dt, where

£(t) >0 for te(0,»). Consider a two-decision procedure 62(U), whose

decisions are d.: Ae{\]|O <X <T}and d

0 Ke{XIT <\ <=}, where T

x
is a positive tolerance, and whose loss function L(SE(U),A) is defined

by (4.2.1) and satisfies conditions (I) through (IV). The form of

62(U) which minimizes the average risk function R(%,.,8,T7,f), defined by

62
(4.2.3), is given by:

dy, U<C
SE(U) = s : (4.2.16)
a U>cC
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where H(C,7) = 0, or by Sé(U) = 4, if H(U,T) < 0 for all U, or by
Sé(U) = d, if H(U,7) >0 for all U. The equation H(U,T) is defined
by (k.2.4).

Some values of a function of C have been tabulated for several
choices of 8, 7, f and L(62(U),K). These tables are described in
Section 5.2 and are displayed in the Appendix. Then the decision of
whether to choose decisions d. or d, can be made by comparing the

0 1

observed value of U to C.

4.3 Multiple decision procedures

In this section the development of two multiple decision pro-
cedures will be outlined. The first will be the combination of p two-
decision procedures arising from p independent noncentral chi-square
distributions. The second procedure will be a g-decision procedure based
on one noncentral chi-square distribution.

In the first case, a method of combining decision procedures
with additive losses will be used to combine p independent two-decision
procedures of the type given in Section 4.2. This combining method is
given by Lehmann [1957]. In this case p independent noncentral chi-
square random variables Ul""’Ub’ whose distributions have noncentrality
parameters Xl""’xp and degrees of freedom Sl""’sp’ respectively,
will be used. The noncentrality parameters Xl""’xp will be assumed
to be independent random variables with prior distributions
Fi(xi) :Jﬂzifi(t)dt, fi(t) >0 for te(0,®), i = 1,...,p. The decision
procedure of concern in this first case will be BP(Ef)’ where

U, = (U,.-.,U ). The number of possible decisions is oP. These
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decisions are given by the Cartesian product of the p sets of deci-
SlonS{dO,j’dl,j}’ j=1,...,p, where dO,j: Lpe{lplo < Kj < Tj}, dl,j:
{APITJ < Kj <e®}, j=1,...,p, and Lp = (xl,...,xp). The tolerances

Tl,...,Tp will be assigned by the experimenter.

Under the assumption of additive loss functions and the assump-
tion that each of the individual loss functions for the decision proce-

dures o, .{U ) with decisimsd. . and d. . obeys conditions (I) througch
273(_p) O)J l)J y ( ) &

(VI) given in Section 4.2, with U‘replaced.by'gi, the form of 6p<9§>
which will minimize the average risk is given by

5o(0) = (3 1(U),eeesBy (T)), (4.3.1)

H t
where 5, .(U) =5, .(U,) as defined by (4.2.16) with the proper sub-
2, -p 2,33

script added. The next portion of this section up to the statement of
Theorem 4.2 is just a verification of (4.3.1) and may be omitted with-

out loss of generality by the reader who is not interested in the

details of this demonstration.
Now to develop (4.3.1), let the loss incurred in making decision

dij,j be Lij’j(xj,Tj), i, = 0,1, j=1,...,p. Then under the assump-

tion of additive losses, the loss function for 6p(9§) is

p
= z {@ U) = L. AT
L(Sp(yﬁ)’lp) —l 1 5 ...,1 ( p) 1 JS,S< s’ s)j
P 1

3 5 (5, (TS (1.5.2)
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where

P 1
¢, (U)= = = ¢ (u) ,
lj’J P s=1 i =0 "1°° )1p -P
. S

S#3

ij = 0,1 and 62 j(yﬁ) is the two-decision procedure with decisions

b

d. . and 4, . and loss function L.(d. .(U A.). In the above equation
0,3 1,J J< 2,3(—p)’ J) 4

take /
fli {le6p(9p> = (di ,lj...’di ’p)
17" 7p "0, otherwise
\
and
P 1 :
r T 98, . (u) =1 (4.3.3)
541 ij:O ll""’lp je)

for all Eb. Thus (4.3.3) gives that

¢ (u) +%& (U) =1
O,J(—p) l;J(—P)
for all Eb, j=1,...,p.

Then the average risk function associated with Sp(yﬁ) is given

by

@© o

R(5_,S ,7 ,£) = | ...| LG (U)A) T g(u, 5,)1, T au. T an,
(oS Ty L) Jo Jo(p<—P> Ay _lg( 25:8;) ()\J)J:l Jiop

P p
zf j L(6 U))\)Hg(U.lK.,S ()\)HdU Hd)\
j=1 "0 g1 4 y 351 Iy

I

b

- , 4.3,
J>31RJ(6 ,j,gpna,zp), (h.3.14)

where §p’ 1p and Ep are defined as are yi and A . Now assuming

LJ.(E)2 j(gb),xj) obeys conditions (I) through (VI) of Section 4.2 for
J

Eb instead of U,j = 1,...,p, then the form of SP(yb) which minimizes
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R(6p,§pzp,£§) can be determined by use of the paper by ILehmann [1957] on

multiple decision problems to be
(w) = (s, '
58 (U) = (B U ceey O
p __P ( 2’1(_1))) J g’p(gp))} ()4' '3’5)

1
wh 85, .(U inimi . . R . .
ere 2,3(—p) minimizes RJ(62’3’§P)TJJ£b)) dJ 1, »P It is easily

seen by a method similar to the one used in Section 4.2 that

1 4
d ., & (uU)=%_ (u.) =1
' 0,3’ O,J(—p) O;J( J>

H
5. AU =95, .(U,) =
2:3(_P) 2:3( J) d é’ (U ) _ Q' (U ) -1 (4.3.6)
l;j, l}j —P l,,j J ?
1 1]
where & _(U,) +&_  _(U.) = 1 for all U. and
O:J( J) l,J( J) J
. 1, U. <C.
3, (U = J J
dd 0, U, >cC,, (4.3.7)
J J
and where Cj is defined as C is in Section 4.2.
1
Thus the form of BP(yb) is given by
' ( III) 5. (
5 (U = { d. .o, d, for . U = l}.
p(Up) i, 1p,p)’ jo1 Iy Y (k.5.8)

This result can now be summarized in the following theorem:

Theorem 4.2: Iet Ul,...,tg be p independent noncentral chi-
square random variables, whose distributions have noncentrality para-
meters xl,...,xp and degrees of freedom Sl,...,Sp, respectively. Also
assume that kl,...,Kp are indefendent random variables with respective
prior distributions Fj(Kj) = foj fj(t)dt, j=1,...,p, such that
fj(t) >0 for te(0,®), j =1,...,p. Let the decision procedure SP(E§>

have the 2P possible decisions (dy 5+.05d, ), i.=0, 1, j=1,...,p,
1,1 1P J
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where d. .: A e{x 0 <. < T.} dd, .: A e{x T. <A, < w}. Then
0,5° MpFApl0 S Ay <7y and dy i Ag AplTy Sy <

the form of Sp(yﬁ) which minimizes the average risk R(ap,§P,I

f
p’—p)

associated with it is given by:

P
6p(9b) - {(dil)l,...,di ,p), when .z @i‘,j(y?P): 1},

D J=1 "3

where Q;.,j(yi)’ j=1,...,p, is defined by (4.3.6) and (4.3.7).

J

Now consider the second case, where a g-decision procedure is to
be considered on one noncentral chi-square distribution. This proce-
dure will decide in which of several mutually exclusive intervals the
magnitude of the noncentrality parameter lies. The decision procedure
will be based on critical values like those used in Theorem 4.1.

To consider the form of the decision procedure let U be the
noncentral chi-square random variable of concern, whose distribution
has noncentrality parameter X and degrees of freedom S. Assume also
that A is a continuous random variable with prior distribution function
FQ):jzfﬁﬁ%,wmﬂef&)>O:mrtﬂ0m).

Let the g-decision prodecure of concern be 6:(U), where it has
the following possible decisions: d?: xe{K]T; <A< T§+l}’ J=0,...,

*

* * *
q - 1, where 7 0, T =+®and T, < T,

o a i 417 J=0,.0., @ -~ 1. Let the
*
loss incurred in making decision dj be
J q-1
* * *

L, =

iMTga) = 20007+ 2 T00T),
-1 1=3+1

. * ( x ) 5T T
j=0,..., a-1, where Tqel = TO,...,Tq) and i%l Ll()\,'r:.L = 2 o ,Ti): 0.
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*
Then the loss function associated with Sq(U) will be

GO - 5 0L,
L(5 (U),A) = = U L A, T
a j=o 9 q+1
where
*
1, (vl () = 5
Q.(U) = b} ()*59)
J 0, otherwise
g-1
j=0,.e., @ - 1, such that = @j(U) = 1 for all Ue(0,®). So the
j=0

*
average risk function associated with Sq(U) is given by

[eo N o)

R(6 S, 7 - Jo jo L(6;(U),X)g(UfK,S)f(K)dUdk (%.3.10)

q+l’

a-1
J J l[( z e ()L, (x T )+( 58, (U))Ii(K,Tz)]g(U|K,S)f(X)dUdK.

0 0 j=1" i=0 i=]

Now assume that

* J=1

@O’j(U) = 156 3, (U)

§ o1 (4.3.11)
@l’j(U) = %J . (U)

* *
and Ib(X,Tj) and Ll(x,Tj) obey conditions (I) through (VI) of Section
hL.2,5 =1,...,9. These conditions allow the interchange of the order
. * *

of integration in (4.3.10) and force Ib(x,Tj) and Ll(x,Tj), J=1,...,q-1,
to obey the assumptions of Theorem 3 of Karlin and Rubin [1956, p. 281].
Thus, since the noncentral chi-square distribution has a monotone likeli-
hood ratio and F(A) is a continuous prior distribution, all the assump-

tions of Theorem 3 of Karlin and Rubin are satisfied. This theorem
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*
then gives the form of Sq (U) which minimizes (4.3.10) to be

* *
5q(U) = {dj, for C; < U < Cj+l}’ (+.3.12)

where CO =0, Cq =+ o,
I * *
Jo [LO(A,TJ.) - Ll()\,Tj)‘E(CjM,S)f()\)d)\ -0,

and Cj < Cj+l’ j=0,...,9-1. For j=1,...,9 - 1, these Cj values
are the same C values which were obtained in Section 4.2, where T is
*

replaced by Tj.

This result can now be summarized in the following theorem:

Theorem 4.3: Let U be a noncentral chi-square random variable
whose distribution has noncentrality parameter A and degrees of freedom
S. Assume further that A is a continuous random variable with prior

A
distribution F(\) = fof(t)dt, such that f(t) >0 for te(0,»). ILet the
*
j+l}’
=0,...,3 - 1. Also let the

* * *
decision procedure Sq(U) have the g decisions dj: Xe{XlTj <A <T

* * * *

where To =0, Tq =+4+oand T, < Tj+l, J

*
loss function associated with 6q(U) be given by

* Q-1 J * q-1 *
LB (W) = = &, (U{ = Ll()\,'ri) + 3 Lo(x,wi)},
4 j=0 9 i=1 1=j+1
J-1 a-1
where éj(U) is defined by (4.3.9) and where X @i(U), by @i(U),
1=0 i=j

* * )
Ib(K,Tj) and Ll(x,Tj) obey conditions (I) through (VI) of Section k.2,

.-.l = l s oees J = 1. I hen Lhe Torm O O ( U) ‘:‘I..lli v‘.l i a'u.i; H j.u';l Zes the aver uzec
< 2 - q
R(d8, 8, T f ven by '(U h 5 '(U) is defined
i i i is erine
risk , S, 1 ) is given ), where

by (4.3.12).
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x 1
The critical C values for 6q (U) are obtained from the same

1 1
tables as those used for 62(U) and SP(Eﬁ)'

L.} A procedure for comparing the magnitude of noncentrality parameters

In Sections L.2 and 4.3, the decision procedures developed were
concerned with the location of the noncentrality parameters in the
parameter spaces, but none of these methods directly compared the magni-
tudes of the noncentrality parameters. So in this section, a method
of comparing the magnitudes of noncentrality parameters will be pre-
sented. This method will give a decision procedure which will make
decisions as to whether two noncentrality parameters are within a cer-
tain tolerance of each other and if not, in what direction the difference
lies. To obtain this three-decision procedure, two two-decision proce-
dures will be developed and then they will be combined through the use
of the paper by ILehmann [1957] on multiple decision procedures. Under

the assumption of linear additive loss functions, the resulting minimum

risk decision procedure will be based on the comparison of the posterior
expectations of the noncentrality parameters. That is, if the posterior
expected values of the two noncentrality parameters are within a certain
tolerance of each other, it will be decided that the two noncentrality
parameters are within the same tolerance, but 1f the two posterior
expected values are not within the tolerance, the two noncentrality
parameters will be said to differ in the same direction as the posterior
expected values differ.

Now to develop the decision procedure, let U, and U2 be the two

1

independent noncentral chi-square random variables of interest, whose
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distributions have noncentrality parameters )\l and ?\2 and degrees of

freedom Sl and S., respectively, where )\l and )\2 are continuous inde-

2

A
pA
pendent random variables with prior distributions Fi(ki) = J 01 T.

; (B)dt,

fi(t) >0 for te(0,»), i = 1,2. Iet the two two-decision procedures of

concern be gi(_l_lg), i = 1,2, where gi(I_JE) has decisions

dO,i: Lge{lgl)\i < XJ. + T}
and (b.4.1)
4 .)Lge{l‘_ghi 2 Ay +T)

such that 1 =1, j=2ori=2, j=1, i =1,2. The tolerance T will
be assigned by the experimenter. Iet the loss function associated

with 51(22) be given by

where ~ -

60,:’!.({—'T ) = ’ (4)4-3)

5\0, gtherwise

a E) — 3 =
such that O,i(I—je) + @l’i(I_JE) 1 for all U,, and where @O,i(gg) 1
only on open sets. Also let
_ 0] s )\i <A, +T
Ly, 1(2p7) = ’
’ L (A= AL = T), AL > AL T
P 1 1=
\
and (4.4 .4)
7/~ -
_ A= A, +T), AL, <AL +7T
s - {0
K 0 o A2 )‘j +T,

such that i =1, j=2ori=2, j=1, i = 1,2, so that L i(ﬁg,'r) is
J
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the loss incurred when decision d.O 5 is made and il i(AQ,T) is the
2 2

loss incurred when decision d. . is made. Note that I, (3. (U.),\.)
1,1 1 1=’ =2
satisfies conditions (I) through (VI) of Section 4.2 when 30 i(gg) =1
2
only on open sets, 1 = 1,2, for L% and Lg replacing U and )\, respectively.

The average risk function associated with gi(yg) is given by:

(% .4.5)

® & © ®

2 2 2
R.(%.,8,,7,£.) :J j f f L, (3.(U.),) T g(u.|r.,8.)f.(\,) T au, T ax,,
it7i’-2 2 00’00 1 i—2 2 521 itvic i1 $o1 li:l i

i =1,2. Since ii(gi(gé),Lg) satisfies conditions (I) through (VI) of
Section 4.2, the order of integration in (4.4.5) can be interchanged to

give

[« <] (-]
R.(3.,8 ,7,f :J f ? (U
1( 1)_2) )_2) O O O,l('— )

© 2 o 2 2 2
. .(n - T .(» }H.)\.U.de. . T P.(u.,) I au.
[JO JO { 0,1(—2’T) 1,1(—2’T) i:lﬁl( 1I 1)i:l 1] i1 1( l)i:l i
+ constant, (4.4.6)

i = 1,2, where ﬁi(inUi) and Pi(Ui)’ i = 1,2, are defined as in Section
L.2. Then in a manner similar to the method used in Section Ik .2, the

form of 56 i(yé) which minimizes (4.4.6) can be found to be
2

i jl, H, (U,,7) <0
T (U) = 1—2
0,i'—= \ 0,

L
N

(b 2. 7)
Hi(I_Jg,'r) >0,

where
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H.(U.,7) = . .(\.,7) - i s (ApT) | T, (\. |U ) H ax.
1'=2 JO JO L 0,i'-2 -2 ]i:l i1 i

E(lU) - BOSlU) -7

v (4.4.4), where 1 =1, j=2ori=2, =1, i=1,2.
Now consider the decision procedure g(gé), where the set of
possible decisions for g(yg) is the Cartesian product of the sets of
possible decisions of 51(95)’ i =1,2. That is, g(gg) will have the

decisions (d

0,10%,2) " 2peApl 2y - <7}

x2| (g o 1’ 1,2)
. Age{§2[xl + 1< (dl,l,do,2): Age{52|x2 +7 <) and (dl’l,dl,g)
: AQ belongs to the null set, where the loss for making the decision

(ds,l’dr,E) is the sum of the respective losses for ds,l and dr,g’
r,s = 0,1. The the unique form of 5(22) which minimizes itscorre-
sponding average risk function, under the assumption of additive losses,

is given by
B(U,) = (5,(1,), 5,(U,)) (. .8)

by the use of the paper by Lehmann [1957] on multiple decision proce-

-1
dures, if the inconsistent decision 5 (g Y = (4

1, l’ ) can not be

1
made. - But & (U.) = (dl l’ ) on the set of U. values given by

—2) -2

(UlEQ|u) > EQ|Uy) + T}ﬂ{gélE(x2|U ) 2 E(r,|U}) + 7) which is a
null set, so the decision gl(yé) = (dl l’ ) can not be made. Thus
g'(gg) is the minimum risk decision procedure. This result can now be
summarized in the following theorem:

Theorem 4.4: Iet U, and Ué be independent noncentral chi-

square random variables, whose distributions have noncentrality
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parameters Kl and Xg and degrees of freedom Sl and S,, respectively.

2
Also let k and K be 1ndependent random variables with prior distribu-
tion functions F, (x ) —fo f, (t)dt f. (t) >0 for te(0,»), i = 1,2,
respectively. Let the two two-decision .procedures Bi(yé), i=1,2,

have decisions (EO 5 a i = 1,2, as defined by (4.4.1) and let
b

3, ),
the loss function associated with gi(yg) be given by ii(gi(yé)’LQ)’

as defined by (4.4.2) where 'ii(gi(ye) ,12) satisfies conditions (I)
through (VI) of Section 4.2, i = 1,2. The form of 'a'i(gg), i=1,2,
which minimizes its respective average risk function is given by
6;(1_12), i = 1,2, respectively, where 5;(1_12) is defined by G.4.7). ILet
€<Hé) be the decision procedure whose set of possible decisions is
given by the Cartesian product of the sets of possible decisions of
gi(yé), i =1,2. Then under the assumption of additive losses, the
form of g(gé) which minimizes its respective average risk function is
given by 5 (1) = (5,(L,), 5,(1,).

Since gl(gé) involves comparing the posterior expected values
of noncentrality parameters, tables are given in the Appendix from
which these expected values can be obtained for several choices of 8
and f, where F(A) is taken to be the gamma distribution. These tables
are discussed in Section 5.2 of Chapter V.

The loss functions used in this section are not very general

due to the great difficulty in computing which would arise if a more

general loss function were used.



V. METHODS TO AID IN THE USE OF THE DECISION PROCEDURES

5.1 Introduction

This chapter will present ways to ald the experimenter in the
use of the decision procedures developed in Chapter IV. In all the
aids to be presented, the prior distribution is assumed to be the gamma
distribution

A
-, p-1_-t/20
t7 e ] at,

F(A|p,0) = | | ————
5 T(p) (20)P

(5.1.1)

P, 6 > 0. The points that will be covered are: (1) the choice of the
parameters p and 8 of the prior distribution; (2) the use of the various

tables given in the Appendix; and (3) the choice of the sample size.

5.2 The prior and approximate posterior distribution

As has been indicated in Section 4.1, any noncentrality param-
eter on which a decision is to be made is assumed to be a continuous
random variable varying between zero and plus infinity. The random
variable will be considered to have a gamma distribution of the form
given in (5.1.1) initially. This form has been chosen for the prior
distribution because it allows the noncentrality parameter to range
from zero to plus infinity, it is a flexible unimodal distribution and
it combines well with the noncentral chi-square distribution.

Once the gamma distribution has been decided on for the general

form of the prior distribution of the noncentrality parameter, a

80
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procedure must be considered for selecting the values of the parameters
of the distribution, that is, the values of p and 9, for the first
experiment. If there is sufficient information available on the
behavior of the noncentrality parameter, the mean and variance of this
information can be estimated. Then the estimated mean and variance
can be equated to the mean p(29) and the variance p(29)2, respectively,
of the gamma distribution. From these equations estimates of p and 9
can be computed.

Three other ways are proposed here for the selection of the
initial prior distribution if sufficient information is not available
to specify the mean and variance of the initial prior distribution.
(1) The first method is to base the prior distribution on the sort of
information which would be likely to be available if an experiment had
been performed, namely, an observed value of the chi-square random
variable that i1s associated with the noncentrality parameter. Assume
this chi-square random variable has S degrees of freedom. This hypo-
thetical observed value can be thought of as an estimate of N times
the noncentrality parameter, where N is the size of the sample from
which the hypothetical observed value would have been computed. Also
this hypothetical observed value would have come from a distribution
which has a mean of at least S and a variance of at least 2S with
equality holding in both instances when the noncentrality parameter is
zero. So to approximate the parameters p and 6 of the initial gamma
prior distribution of the noncentrality parameter, the experimenter
can set the mean and variance of N times the noncentrality parameter

2
equal to S and 23, respectively, that is, Np(29) = S and N2p(29) = 28,



82

and solve for p and . This method gives p = 1/2S and 6 = 1/N. The
experimenter could take N small, say 1, if he is fairly certain that
A > 0 and could take N larger if he thought it likely that A = 0. If
the experimenter feels that he cannot make the assumption that the
approximate prior distribution is of the form given above, that is,
that A is likely to be small, then two other possible courses of action
are as follows: (2) The experimenter can assign a uniform weight
function for the first experiment, which will give equal weight to all
possible values of the noncentrality parameter \; (3) In the case when
the experimenter is choosing between decisions of the form O < A <7
and T < A < o, he can assign a prior distribution which will have its
median at 7 and thus assign equal weight to both decisions. In (2),
a uniform weight function is the same as a gamma weight function
£50) = )\p-le-)\/EG’ with p = 1 and 6 = +w. When the decisions are of
the form O f_x <Tand T f_x < o, this weight function will assign
unequal weights to these two decisions, even though it seems to be
impartial. So it may be more appropriate in this case to follow (3)
and use a gamma prior distribution which has its median at 1, for
example, a gamma prior distribution defined by p = 1 and 8 = 1/(21n2).

Once the prior distribution of the noncentrality parameter has
been selected and the actual chi-square value has been observed, the
problem of computing or approximating the posterior distribution must
be faced. The posterior distribution would hopefully always have a
simple form and be easily computed, but in this case that is not true.
The actual form of the pdf for the posterior distribution 1s very

cumbersome even after just one experiment has been performed and
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becomes even more so after each new experiment is performed. For
example, 1f the random variable U under consideration comes from a
noncentral chi-square distribution with S degrees of freedom and non-
centrality parameter A\, then the posterior pdf for A after a value of

U has been observed, when the prior distribution has pdf
-1 _-\/26 .
£0) =227 e () (20)P) (5.2.1)
is as follows:

M2 2 ()’ . 2t o2
30 r(1/28+3)512°9  T(p) (20)F

(5.2.2)

m(r|U) =

e w 3 p-1_-A/28
J}e-x/g 5 (0n) - A e ]dx
o J=0 I'(1/28+3)312°0  T(p) (29)P

So far this function has defied significant simplication.
Thus if these decision procedures are to be used in successive experi-
ments, some approximation must be applied to 7w{(A|U) before it can be
used as the prior distribution for the next experiment. For convenience
this approximation should be of the same form as the previous prior
distribution, so that only one set of critical values need be computed.
It must be simple enough so that the experimenter can determine the
parameter of his new approximate prior just by doing a few calculations
and/or consulting a table. This can be done when the previous prior

was a gamma by approximating ﬂ(k{U) by the gamma distribution of the

form
)\._
P a,9) = | {tq'le-x/gm / ((29)% F(q))]dt,

%)

0
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where the parameters q and ¢ can be found by setting the mean q(2¢) and
the variance q(2@)2 of the gamma equal to the mean and variance, respec-
tively, of the posterior distribution and then solving for q and o.
This will be an approximation the experimenter can handle, since the
mean and the variance of the posterior can be determined from the tables
given in the Appendix by a few simple operations. Those operations will
be given in Section 5.3. While this method may not be the best possible
approximation, it is easy to apply and any other approximation would be
difficult for the experimenter to use.

To give an indication of the appropriateness of this approxi-
mation, the actual posterior density m(A|U) and the approximate posterior
density f()\) were computed for values of A from .2 in steps of .2 until
(2| U) and £(1) were less than 0.0000000001. Then X = Z{f(x)_ﬂ(KLU)}g

x  m(AU)

was computed in each case. The value of X was computed for the follow-

ing combinations of parameter values: (1) All combinations of the
following parameters; one through nine in steps of two for S5, one
through five for p, five through twenty-five for U, and one-half
through two in steps of one-half for 6 and (2) For S equal to thirty-
five, all combinations of five through nine for p, ten through forty
in steps of ten for U and one-half through two in steps of one-half
for 6. TFor each set of parameter values considered the value of X

was found to be less than 0.125.

5.3 The use of the tables given in the Appendix

The tables which are given in the Appendix were calculated on
the IBM 709 and the CDC 6L00 computers at the Florida State University.

These tables give values which are necessary to conduct the decision
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procedures given in Chapter IV under the assumption that the non-
centrality parameter has a gamma prior distribution. Tables are also
given to determine the parameters of the gamma distribution used to
approximate the posterior distribution of the noncentrality parameter.

The tables are divided into two sets: (1) Tables 1.1.1 through
1.5.5 give a function of the critical value of the noncentral chi-square
random variable which is needed to conduct the decision procedures given
in Sections 4.2 and 4.3; (2) Tables 2.1 through 2.5 give values from
which the critical expected values needed for the decision procedures
given in Section 4.4 can be obtained and they also give values from
which the parameters of the approximate gamma posterior distribution can
be calculated.

For the decision procedures given in Sections 4.2 and 4.3,
tables of C values are needed, where C is that value of U which satis-

fies (L.2.L4), that is, for which

H(C,T) = | (Lo, = L ()T w(i|c)an = o. (5.3.1)

0
Tables 1.1.1 through 1.5.5 give a function of C values to two decimal

places for the following type of loss function:

O , A<T
Ly(ht) = -
ko()\-'f), A>T
(5.3.2)
k (T‘>\>) A _<_T
Ll()\yT) = { =
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ko, kl > 0, which i1s a special case of the ioss function defined in
Conditions (I), (II) and (III) of Section 4.2. The tables are given
for only one type of loss function due to the rather long time necessary
to determine each C. As was indicated in Section 5.2 onlya gamma distri-
bution or a gamma weight function with parameters p and 6 are used, so
that the probability density m(A|U) defined by (4.2.5) is given by
Y/ 28,-1/2U

7\ Ju) = e'x/[29/<9+1)]j20 [ijp+j-l/(F(l/28+j)j!223)].[

b4

21/2Sp(U)

(5.3.3)

where S is the degrees of freedom of U and p(U) is such that

D (u)an = 1.

0

Then putting (5.3.2) and (5.3.3) into (5.3.1), making the transformation
20 .

vy = X/[éii], performing the integration and solving for the ratio

R = (k,-k )/k

1 070

(5.3.1) is seen to be equivalent to

jz_O[C*J' (T (pri+1)-r*T (p+3))/ (T (1/25+3)31) ]

Hos)g (Y F Gl

R = H(C®

*
s T ,p,S) =

j=OF(1/2S+j)j! iio i1 (pri+]) (pri+j+1)

(5.3.54)
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where

¢ = 6/ (2(8+1))

and (5.3.5)

(9+1)T/(29)

=
Il

So the tables 1.1.1 through 1.5.5 are given in terms of C* values, for
selected values of S, p, v and R. The degrees of freedom S takes on
the values one through five while p takes on values which depend on
1/2s, decreasing from 1/23 in steps of 0.2 and p also takes on five
values greater than 1/28, increasing from 1/28 in steps of 0.2. The
tolerance T* takes on the five integer values one through five. The
ratio Ri indicates that the experimenter feels that a wrong decision in
the region T < A <o is 10+101 times as bad as a wrong decision in the
region O < A < 7. These choices of the R's can be compared with the
ratio of the Type II error (&) to the Type I error (B8) minus one in
the conventional hypothesis testing situation. That is, if the experi-
menter wishes to have & one-tenth of B or o five-hundredths of B, he
would choose R to be 9 or 19, respectively.

The appropriate C* values were obtained by using the Newton-
Raphson interative approach on (5.3.4) for the given values of S, p
and R. If a zero entry appears in Tables 1.1.1 through 1.5.5, this
means that (5.3.1) does not have a zero for C* > 0 and that the decision
A > 1 is always taken for the particular choice of S, p and R which
correspond to the zero entry.

To find an accurate approximation to the infinite sums involved,

two well known lemmas on infinite series were used from Olmsted [1959].
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Consider first the two single infinite sums given in (5.3.4). The
method of approximation used in these two cases is given by the
following lemma:

Lemma 5.1: (Theorem I, Section 720, Olmsted [1959, p. 2357.)

00 a .

S= 3 a.,, r, = g+l , r.] and 1lim r. =p<1l,
i=0 J J a. J i = o J
dJ 3 J

then for any n for which r <1,

If aj > 0, Sn = agh.. .+,

s, + an+l/(l-p) <8 <8+ an+l/(1 - rn+1). (5.3.6)

Let

- ; e Jl“(p+l+3)]

T(1/25+3)3! (5.3.7)
*j .
_ C - I'(p+l+3)
&5 T TTI/25+3) 41 (5.3.8)
and
* . . .
r, = M (prled)/ ((1/25+5) (5+1)). (5.3.9)
Now rj > rJ+ for all j, so that r.1 and 1im r, = 0. Thus the lemma
J-oe
can be applied. Let
n
5. = & a, .3.10
n o j=o0 J : (5.3 )
where aj is defined in (5.3.8). 1In the computations the number of
terms n in the partial sum Sn was taken large enough so that both a 1

and an+1/<l-rn+l) were less than e = 0.0000001 for r ., < 1. Thus S
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is within ¢ of S as given by (5.3.7). A similar procedure was used for
the second single sum in (5.3.4).
Now for the double sum in (5.3.4), the Lemma 4.1, plus the
following well known lemma were used:
Lemma 5.2: (Theorem given Section 715, Olmsted [1959, p. 2257].)

© .
An alternating series = (-1)101, whose terms satisfy the two conditions
1=0

(1) Coe1 <Cp for every n

(ii) Cn"‘O 'as n = o

converges. If S and Sn denote the sum and the partial sum of the first

n terms, respectively, of the series, then
Sn -S| < Cn+l'

So in the double sum in (5.3.4) consider first the alternating

internal sums which are all of the form

S, = w (T)

J izo il (p+i+J)(pri+J+l) ° (5.3.11)

Then let
*1i,,. s -
Ciy = (1771 (prieg) (pri+j+1)) .
*
Now for i >1 , C, .. <C,.. Also,
i+1l] ij
lim Cij = 0.

i -
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*
Thus for that portion of (5.3.11) for which i > 7 , the alternating

series lemma can be applied. So if

n .

1
S . = -1 . .3.12
ng = 2o (T G (5.3.12)

then
s. =S . <¢C .
J nj n+1j
*
for n > T . 1In the calculation of partial sums of the form (5.3.12)

*
M > 1 was taken large enough, so that

Crp1j < (e)/ (bk) (5.3.13)

o] * K.
*(prl) o (CT)I
j=Or 1/28+3)J!

reason for taking this kind of tolerance will become apparent later.

for n > M, where k> 71 and € = 0.0000001. The

Now let
sprl N C* *. 3
_ T
Wy = (7)) iZo T725+3)31 Smj?
(5.3.1k)
N *_*\J
W, = (’T*)p—‘-l z —-E—C7T—L-T— S.,
N j=o I'{L/25+3)Jt ~J
and .
) = (TS
K jio r{y/28+3)3! (5.5.15)

*
For n > M> 1 satisfying (5.3.13),

W = €/% Sy S+ e/h. (5.3.16)
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Now consider
* %3
(Cr )J+l S

* ¥
dJ
541 (cv) Sj

il I(1/2s+3+1) (F+1)1 r(1/28+3) 3!

_ (C*T*) Sj+l
©(1/28+3) (§+1) ° sj

which is such that

lim r. =0

J e

since Sj+l/sj approaches one. Also as j becomes large, rj will be

dominated by the term

(€Y / ((1/28+3) (5+1))

Thus for large j, rj is decreasing. So by Lemma 5.1 given above

* * ¥
N e L

r(1/28+N+1)(N+1)1(1-rN+

T*(p+1)<C*T*>N+l
WN +

<W<L
SN+1—-W‘—WN +

T(1/284+N+1) (N+1)! 1)

(5.3.17)

for N large enough so that rj is decreasing for j > N and so that

ry,p < 1. Then also by (5.3.13), (5.3.16) and (5.3.17),
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* 1 * ¥ N+1
(r P (€T sy,

W -¢e/b <W < W< W+
N+1,M - Nl- =W T(1/28+M+1) (1)1 (-1, ;)
T*(p+l)(C*T*)N+l(SM N+l+e/h)
SWeim™ e/b + o~ (5.3.18)
’ F(l/ES+N+l)(N+l)!(l-rN+l)
where
R * % (s + /L)
1> il = (cr) M,N+2 (5.5.19)

' Z Ty
(1/2S+N+1) (N+2) (SM,N+1- e/h)

for M > 7 satisfying (5.3.16). In the computations, N was taken such

that

*(prl), % * 41
T (p+ (c't) + (§M1N+l + e/L) < o/,

[(1/28+N+1) (N+1)!(1-§N+l)
so the double sum in (5.3.4) was computed within e of its value.

The methods indicated above for calculating the sums which
make up R, defined in (5.3.4),allow R to be computed correctly to more
than four decimal places, that is, the values of C* which are tabulated,
are values which force the ratio (5.3.4) to be within four decimal
places of the specified R value.

To find C* values for p, T* and R values not listed in the
tables, but which are within the range of the tables, a five point
Lagrange interpolation formula for equal intervals, as given by Kunz
[1957, p. 91], can be used on each p, T* and R to give two decimal

place accuracy.
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For the decision procedures given in Section 3.4, tables must
be provided from which the function E{A|U,p,8,S) can be obtained with

a minimum of effort, where

e el 5 (o) xp+j-l] ax

=0 F(1/28+3)3!
E(A|U,p,0,8) = — : (5.3.20)
vl © amid ity

j=0 T(1/28+3)3!

O—38
| ‘”"1

8

O

The tables which contain the necessary values are Tables 2.1 through
2.5. To see what is tabled and how to use it, consider (5.3.20) after

the integration has been carried out, so that

z (o) Lleri+l)
- j= T(1/28+3)3!
E()\IU,p,Q,S) = [Q—i—l] - ) - (5.5.21)
s (uyd Lp+d)
j=0 r(1/2s+3) 31
= [9+l] [p + UW(p,U",8)] (5.3.22)

where
5 (U*)J F(P“’J“"l)

N j=0 I'(1/28+j+1)3!
W(p)U }S) = s (55-25)
j=0 F(l/25+j+l)j !

* *
and U is defined like C in (5.3.5). Tables 2.1 through 2.5 contain

* *
values of W(p,U ,S) for selected values of S, p and U . The values of
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S and p which were used in the first set of tables were also used in
this set, but p will also be allowed to take on five additional values.
The reason for having these extra values will become apparent later.
The values of U* which are used are 0.5 through 15.0 in steps of 0.5
and 20.0 through 50.0 in steps of 5.0 along with 75.0 and 100.0.

The infinite sums in (5.3.23) were approximated in exactly the
same manner as the single infinite sums were approximated in (5.3.4),
with the same tolerance (0.0000001). This method will give an approxi-
mation of W(p,U*,S) which is accurate to more than two decimal places
but the table is given to only two decimal places. To arrive at values
of p and U* which are not tabled, but are within the range of the table,
linear interpolation can be used with two decimal place accuracy result-
ing. If a value of U* is observed which is greater ﬁhan 100.0, use the
value of W(p,100,S) for U" near 100.0 and use W(p,U*,S) = 1. for U"
much greater than 100.0.

In summary, to use the table, first observe the values of p, 0,
U and S. Then compute [26/(6+1)] and U" and find the value of W(p,U*,Q,
interpolating if necessary, corresponding to p, U* and S in the tables.

Then compute

E(MU,p,0,8) = [26/(6+1)] [p + v W(p,U,8)] (5.3.254)

which gives the desired result. For a quick approximation to (5.3.24),

one can compute

E(\U,p,0,8) = [26/(8+1)] [p + U ]
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*
This approximation will be good if p is close to S/2 and/or if U is

greater than 25.
To determine the parameters of the approximate gamma posterior

distribution discussed in Section 5.2, the following two equations must

be solved:

2qQP = E(KlU,p,@,S)

and

a(29)" = 8(%|U,p,6,8) - [E(A|U,p,6,8)1° .

The solutions are

o
2¢ = E(A\"|U,p,6,8) / E(\|U,p,0,8) - E(A|U,D,9,8)

and

E(KlU,p,@,S)/(Z(p).

Q
It

Now the equation for 2¢ can be written as follows:

[

5 (I Llpri2) s ()3 Dlptisl)
3=0 L(s/2+3)3! 3=0 T(s/2+3)3!
20 = (26/(6+1)) | — _ . - . . |
s (o) [ (pri+l) 5 () T (p+d) |
i=0 F(s/2+3)31 3=0 T(S/2+j)j{_j

[26/(6+1)] [1 + U {(W(p+1,U",8) - W(p,U",8)}]

by (5.3.23). From (5.3.22)

a = [28/(6+1)] [p + UW(p,U,8)1 / (29), (5.3.25)
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where W(p,U*,S) is given in Table 2.1 through 2.5. Thus separate
tables need not be prepared for q and ¢ and to find them, it is neces-
sary only to look up two values in Tables 2.l‘through 2.5, one under p
and one under p+l.

In many cases the noncentrality parameter is of the form NA
instead of just A. If this is the case, the procedure for using the
tables would be the same, but (26/(6+1)) would be changed to (26/(N6+1)),
(6U/ (26+1)) would be changed to (NOU/(2(N6+1))) and ((6+1)7/(26)) would
be changed to ((6+N)T/(2N6)). The decisions of interest in this case
would remain as decisions'on A and would not change to decisions on Ni.

Also in some cases the noncentrality parameter would not vary
between zero and infinity, but would be bounded above by some constant.
This situation can be approximately handled by considering Y = NA
instead of \. 1In this case, the procedure for using the tables would
be the same, except that (26/(6+1)) would be changed to (2N6/(6+N)),
(6U/ (2(6+1))) would be changed to (6U/(2(6+N))) and ((6+1)7/(26)) would
be changed to ((6+N)7/(20)). The decisions of interest in this case
would be approximately equivalent to decisions on the magnitude of \.

In all the tables given in the Appendix only two decimal places
are given, because the author feels that in most applications at most

two decimal places would be retained.

5.4 An approximate method for computing sample size

This section is concerned with an approximate method for
determining the optimum sample size, that is, the sample size which

will approximately minimize a cost function. 1In this discussion, the
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cost per observation and the initial set up cost are assumed to be
standardized, so that they are in the same units as the risk function.

Let the parameters of the gamma prior distribution on the
noncentrality parameter A be p and § and let the parameters of the
approximate gamma posterior distribution which will be observed after
the experiment is performed be q and ¢. Also let the same size of
this experiment be M.

Now in Part 1, to show that minus two times the natural loga-
rithm of the likelihood ratio statistic converge in distribution to a
noncentral chi-square random variable U, an assumption of local alter-
natives had to be made. This assumption causes the noncentrality
parameter MYM to converge to constant A, as M = + .

In Chapter VI, it is shown that when the distribution of concern
is only an asymptotic noncentral chi-square distribution and when the
decision procedures developed in Chapter IIT are used, the average risk
function converges to the minimum average risk function for the exact
noncentral chi-square distribution. So to determine the approximate
sample size in the asymptotic case, it is appropriate to use the prop-
erties of the exact case.

For an approximate method for finding the sample size in the
asymptotic case, assume that YM = A. Then the noncentrality parameter
for the approximate noncentral chi-square distribution is MA. This
technique of setting Yi = A to approximate the sample size has also
been indicated by other authors, for example, Kendall and Stuart [1961,
p. 436], Cochran [1954, p. 419] and Patnaik [1949, p. 216]. If the
random variable U has an exact noncentral chi-square distribution,

the noncentrality will either be in the form My or a function of M.
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In most cases when the noncentrality parameter is a function of M
and is not of the form My, M appears as the upper limit of a summation
of constants which are specified by the experiment and they do not
contribute to the randomness of the noncentrality parameter. Thus if
the noncentrality parameter, in this case is expressed in terms of the
averages of these constants, it can be expressed as MYM. This type of
noncentrality parameter is common in the analysis of variance theory.
So for the sample size determination in this case consider YM =Y.
Then the results given here can be applied to all three situations
considered.

So now assume that the approximate or exact noncentral chi-
square distribution in question has S degrees of freedom and non-

centrality parameter My, so its density is

~-(UsMy)/2 o~ _1/28+j-1 J
e U (My)
UlMy,s) = % - A
g(ujmy,s) 51728 5=0 T(1/28+5)§12%3 © )

and the density of the gamma prior distribution of v is
-1 =vy/26
tv) = (P 20 / (T(p) (20)P), (5.5.2)

or the prior uniform weight function on ¥ is

£(y) = 1. (5.4.3)

To find the approximate sample size M, a relation between the

parameters of the approximate gamma posterior and the sample size must
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be determined. To do this, let UM be the value of the approximate or
exact chi-square random variable U, based on M observations, which
would be observed when the experiment would be completed. Then the

density of the approximate gamma posterior distribution given UM

would be:

nivln) = (L P9 (r(a) (20)Y), (5.5.1)

such that

8]
-3

Il

QM{l + XM[W('D'F]-,qXM:S) = W(p)XM)S)]}
and (5.4.5)

oy tp + X, W(p,X,,8)}/20,

Q
Il

where

= MU, 9 / (2(M6+1))

2

and . (5.4.6)

D
Il

26 / (Mo+1)

for a gamma prior distribution for which 6 < 4w, while

Xy =02
and (5.4.7)

6, =2/M

for the uniform weight function with 6 = 4+« and p = 1.
Now W(p,XM,S) is tabled in the Appendix for various values of

Py Xy and S and it can be seen there that W(p,XM,S) approaches one
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more rapidly than XM approaches infinity and it is close to one for all
values of XM. So for the approximation of q and ¢ for use in the sample
size determination, let Uy equal its expected value (1/2S + My), and let
w(p,xM,s) and w(p+1,xM,s) both be one. Thus for U, = 1/2s + My, (5.4.5)

can be approximated to give

2p =6

and (5.4.8)

where
g ~ My/2 ,

and (5.4.9)

Oy ~ 2/M

for all gamma type priors. So let the approximate parameters of the

posterior gamma distribution to be used for the sample size determi-

nation be
¢ =1/M

and | (5.4.10)
q =26 p M.

The form of q is found by replacing vy by its prior expected value 20p.

For an initial uniform prior weight function let

¢ =1/M

and (5.4.11)
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The choice of @ = M is somewhat arbitrary, since the expected value of
Y does not exist in this case.

Now that the parameters of the posterior distribution have been
approximated in relation to M, the cost functions which yield the
approximate optimum sample sizes for each of the decision procedures
given in Chapter IV can be given.

For the decision procedure bé(U) given in Section 4.2, let the

cost function be

[e e}

F(M) = C,M + C, + f [LO(YfT) + Ll(Y,'r)]ﬂ*(y)dv, (5.4.12)
0

where Cl is the standardized cost per observation, 02 is the standardized
set up cost, and both Cl and C2 are in the same units as the posterior
risk. The losses Lo(y,T) and Ll(y,T) are given by (5.3.2). The same
type of linear losses were used in computing the tables given in the
Appendix. The density ﬂ*(Y> given in (5.4.12) is the density of the
approximate gamma posterior distribution for sample size determination,
whose parameters q and ¢ are given by (5.4.10) and (5.4.11).

Now substituting (5.3.2) in (5.4.12)

[o2]

* *
F (M) = C,M + Cy + K r (y-m)m (v)dy
T
T

f x| (ren (Vay, (5.4.15)
0

where

vy =y PO Y M)y e ognny (2020
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where both 6 and p are one if a uniform prior weight function was used.
Then letting k = max(ko,kl), (5.4.13) can be bounded by

o

M+ C,+ k J |y-2ep|n (v)dy + k|2op - 7|.

*
F (M) < Cy
0

Applying the Cauchy-Schwartz inequality to the above integral,

* 1/2
F (M) <CM+Cy+ k[V(v|(26pM, 1/M)]  +k|°6p - 7|

Y

2
< CM+ C, + k[hop/M]" +k|20p-7| = Fl(M).

-1
Now considering M to be continuous, the minimum of Fl(M) can

*
be found, which gives an approximate minimum of F (M), by differentiating

Fl(M) with respect to M. Now

i _ —3/2
S = Cl k[@p] M .
aFl(M)
Then setting ST = 0 and solving for the approximate optimum
Mo
sample size MO’ MO is found to be
1/2 2
My = ((ep)? (x/e )Y (5.4.14)

2 cqs
The second derivative 3 Fl(M)/aM2 at the point MO is positive, so that
MO yields a minimum as desired.
If instead of just one two-decision procedure on one non-

centrality parameter, there are ¢ independent two-decision procedures
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6; i(Ui), i=1,...,4 on YyreeesY which are to be combined through the
2

£

use of the Restricted Product method to give the decision procedure

1
Sz(gz) developed in Section 4.3, the sample sizes are found separately
for each of the decision procedures Sé i(Ui), i=1,...,2, since the
2

combined posterior risk is the sum of the posterior risks of the indi-
vidual two-decision procedures.

In the case when the f-decision procedure 6;'(U), which was
also developed in Section 4.3, is to be used, the cost function can be
expressed as the sum of the posterior risks of (£-1) two-decision

t
procedures &, .(U), with decisions d and d, ., i =1,...,(£-1)
2,1 1,1 ?

0,1
*
where T; < ... < T(z 1)’ plus M times C the standardized cost per

l)
observation, and C2, the standardized setup cost. Thus a reasonable

cost function is

% 2-1
=CM+C. + %

21 j {LO(Y,T:) + Ll('Y,T:)} T (v)ay,

0
(5.4.15)

* *
where Lo(y,Ti) and Ll(Y,Ti) are defined as in (5.3.2), i =1,...,(2-1),
and ﬂ*(Y) is defined as before in (5.4.13). Now (5.4.15) can be

approximated in the same manner as (5.4.13), so that

2-1
FZ(M) <CM+C,+ T {k[hep/M]l/g} +
< =z
£-1 N
> [k|26p - TiIJ =F,(M) .
i=1
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The approximate optimum sample size which minimizes Fz(M) can now be

found in the same menner as (5.4.14) was determined. Thus if M. is

the approximate optimum sample size,
1/2 2
M,y = {(6p) / ((z-l)k/Cl} /3 . (5.4.16)

If the magnitude of the noncentrality parameters are to be
compared in the manner indicated in Section L.4, a reasonable cost

function for comparing Y, and Yo is as follows:

°°'Y2+’\'
F*(M M.) =CM, +CM +C + \’jk(y -y —T)W*(Y )ﬂ*(y Yay., dy
1772 11 2P ”0012 1M1/ T/ M T
Jj k x *< dy., a (5.4.17)
+ (v o+ =Y )7y (v )7, (v, ) dy dv, 5.4.17
0 Yo+t

where Ci is the standardized cost of taking an observation from popula-

tion i, i = 1,2, C is the standardized setup cost, and

mvy) = [v; ] / [T(20mM;)(2/M)

15

i =1,2. Now from (5.4.17), it can be seen that

I 1o

*
F (Ml,Mg) < C M+ C M, + C +

i=1

oO-— 8

o0
L lei-QGipi

‘

Xv2) (v )dy.d 2
7y (Y1 ﬂé(Ye) v, v, + k 91p1-292p2— T. (5.4%.18)
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Then applying the Cauchy-Schwartz inequality to the above integrals,

(5.4.18) becomes

2 heipi

My M+ O B k[ . ]
i=1 i

1/2

*
F (Ml,Mg) <cC

+ k|261pl - 26,p, - T| = Py (M M),

Now considering Ml and M2 to be continuocus and setting

aFl(Ml,M

5)
oM., =0
1

(M, .,M

10’ 20)

i=1,2, and M2 are found to be

M0 0

My, = (0,007 (o)1, (5.4.19)

1i=121,2. The values of Mlo and M20 minimize Fl(Ml’M2> since the matrix
of second partial derivatives of Fl(Ml,M2) is positive definite at the
point (MlO’M2O)’

If ¢ noncentrality parameters are to be compared in the manner
given in Section 4.4, the approximate optimum sample sizes can be found

to be

My = [0 (0017

i=1,...,£, in a manner similar to the way (5.4.19) was determined.
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It must be remembered that in arriving at values of ¢ and q
for purposes of sample size determination, it was assumed that the
value of M selected would not be small. Therefore, the procedures
would be applicable only when the cost per unit sampled (Ci) is small

in comparison to k, Gi, 1 and £.




VI. ASYMPTOTIC CONSIDERATIONS

This chapter will be concerned with sequences of random varia-
bles which are only known to have asymptotic noncentral chi-square
distributions. That is, it will be assumed that the statistic U of

u
concern has a cumulative distribution function Gh(UIX) = J dGn(tlx),
0

which is measurable with respect to A\, with liméGn(le) = JZé(tlx,S)dt,
where g(tlx,S) is the pdf of the noncentral Zhi-square distribution with
noncentrality parameter A\ and S degrees of freedom. To apply the deci-
sion procedures given in Chapter IV to random variables which only have
asymptotic noncentral chi-square distributions, the sequence of risk
functions, based on Gn(U|x) and the optimal decision procedure for the
exact noncentral chi-square distribution, must converge to the minimum
risk function given in Chapter IV.

The decision procedures developed in Section 4.2 and 4.3 are

all based on a decision function of the form

. {1, U<c
@O(U) = (6.1)
lo, U>cC.

So for these cases, it is sufficient to show that the risk function

1
based on Gn(U|x) and @O(U), which is

Rn(Sg,S,T,f) = jo [Jo @;(U)h(x,w)dGn(U|x)]f(x)dx

+ Constant (6.2)

107
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converges to the risk function

(o] [oe]

R(5,,8,7,f) = Io [ Io @C;(U)h(x,T)g(UI)\,S)]f()\)d?\

+ Constant, (6.3)

where

b(h,1) = LyOoT) - L ()

has the properties given in Conditions I, IT, and III of Section b2,
A demonstration that Rn(62,S,T,f) approaches R(BE,S,T,f) in the limit
as n becomes large is given in the proof of the following theorem:

Theorem 6.1: Let Gn(UM) = JZ dGn(Un) be a distribution
function, which is measurable with respect to A and which converges to
the noncentral chi-square distribution G(U|%,S) = JUg(tlx,S)dt and let
A be a random variable with distribution function F%x) = fx f£(t)at,
where f(t) is a continuous function of te[0,»). Also let gé(U), as
defined by (6.1) be the decision function which minimizes the risk
function R(62,S,7,f), as defined by (6.3). Then the approximate risk
function Rn(SE,S,T,f), as defined by (6.2), approaches R(62,S,T,f) in
the limit as n becomes large.

1
Proof: Putting the form of & (U) given in (6.1) into

R(5.,S,7,f) and Rn(S S,T,f), it is found that

2’ 2’

[e o]

c
Rn(ag,s,'r,f) = Jo h(x,w)[ jo dGn(le):\f(x)dx

+ Constant

and
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R(&Q,S,T,f) ::fo h(x,T)[fo g(UIx,S)dU]f(x)dx

+ Constant.

Now by the properties given in Conditions I, II, and III of Section
L.2 for h(r,r), f h(A,T)f(A)d\ is finite. Then since it is assumed
0

that lim G (U[A) = G(U[r,S) and since 0 < G_(U/A) <1 for all n,

n — c

lim Rn(Sg,S,T,f) = 1im f h(n T)f f ac (le)]f(x)dA

n — o n — o©

+ Constant

J

+ Constant

o c
n(x, w)[ 1im f G (le)]f(x)

0 n-— o

Joh(x,T)[ fo g(U|x,S)dU]f(x)dx + Constant

= R(6 S,T,f),

2}
by the Lebesgue dominated convergence theorem.
Now consider the decision procedure developed in Section 4.4,

This decision procedure is based on a decision function of the form

. 1, EOU) <EOGLIUYD) + 7
Eb’l(Ul,U 1 22 (6.4)
0, E(\IU) >EOLIT) + 1

which ig in the same form of Equation (k.k.7). So for this case, it is
only necessary to show that the risk function based on Gn (Ullxl),
1

Gng(Uglxg), 0, l(U U2), the losses defined by Equation (4.4.4) and
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Ay

prior distributions Fi(xi) = f fi(t)dt, i = 1,2, which is given by
0

RBn ,ng)(51’§2’7’£é)

- fo Jo [Jo Jo Eg’l(Ul,Ug)(xl- Ao T)dGnl(Ul]x )ae_ (U |X2)]
£, (1) f,(A,)dn dr, + Constant (6.5)

converges to the minimum risk function defined in Equation (4.4.5),

which is
Pr ~ '
00 O 0
fl(xl)fg(xg)dxldxg + Constant. (6.6)

To see that if Rl(nl,n )(6 SE,T,f ) converges, it converges to
§1(51,§2,T,£ ), it is sufficient to prove the following theorem:

Theorem 6.2: ILet Gnl(Ullxl) and Gng(Uélxg) be distribution

functions which are measurable with respect to xl and Xg and which con-

verge to the noncentral chi-square distributions G(Uilxi,si)

U.
i

- T g(t]r;,8,)dt, i = 1,2, respectively, and let A, i = 1,2, be
0 A -
random variables with Fi(xi) = j fi(t)dt, such that j tfi(t)dt exists
0

1
and fi(t) is contimuous, 1 =1,2,. Also let &, l(Ul,Ué), as defined by
M4
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(6.4), be the decision function which minimizes the risk function

Ei(gl’§2’T’£é)’ as defined by (6.6). Then at least one subsequence of

the risk function l(nl,ng)(61’§2’7’£2>’ as defined by (6.5), converges

to Rl(61,§2,7,£ ) as n, and n, beccme large.
-t
Proof: In the decision function g, l(Ul’Ué>’ defined in (6.L4),
2
let 7(U,) = E()\2|U2) + 7. Then (6.4) is in the same form as the deci-
sion function, defined by (4.2.7), for the two decision procedure dis-

cussed in Section 4.2 when the linear losses defined by Equation

(5.3.2) for ky =k, and T = 'T(Ug) are used. So that for each U,

1
3 l(Ul,U2) can be expressed in the same way as the decision function
)

given in Equation (4.2.8) with C = Cl(Ug). That is,

1 1, U, <¢C (U )
0, U > CE(UE)

Similarly, setting T(Ul> = E(xl|Ui) - 1, (6.4) can also be expressed

in the form

' 1, U.>c.(u)
Ty 1 (U0, - e 2l (6.8)
0, U, < Cg(Ul)

\
Then putting (6.7) and (6.8) into (6.5) yields

Ry( y (815857, £,)

i R
N jO JO (hq= Apm T)H(nl’nglxlfxg)fg(xg)fl(Xl)dkldxg + Constant

where
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- Cl(Ué)

itnymylagng) = ][] as, (@) o, ()

1
Cg(Ul)

=1- jOL JO Gy,
Since the Gn (Ui|xi) converge to noncentral chi-square distributions,

i
use of the Lebesgue dominated convergence theorem and the Generalized

oo

2(Ué|x2)]denl(Ullxl> :

Second Theorem of Helly, (Gnedenko [1963, p. 267]) leads to

n;fmg nli?m H(ny,np[0000) = nlimg nlimé Io[ Jo dGnl(U1’x1>]dGn2(U2|X2)
2 1 2 1
©3()
= lin I | J g(Ui|x1’Sl)dUi]dGn (u,n,)
n— o 0O 0 2
o
- Cl(Ug)
“ ror
=:JO ] JO g(u; 1,5, a0, Je(U,1n,,8,)d0,
[oe] h.oo —‘
::fo JO @O,l(Ul,U2>g(Ullxl,sl>g(Uélx2,sg>dUldU2
= H(Ahp) 5 (6.9)

and similarly
Cg(Ul)

. Ff

1 2

= Hoh,) - (6.10)
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Next consider the seqlience H(nl,n2|xl,x2) jointly in (nl,ng).

Since 0 < H(nl,n2|xl,x2) <1 for all (nl,ng), the First Theorem of
Helly, (Gendenko [1963, p.264]), indicates there exists at least one
subsequence (nl ,n,. ) such that Llim H(n

2
k k (nl ;n2 ) - (°°}°°)
k

k
converges. (It should be noted here, that in the First Theorem of

Iy, nn)
k 1’72

1,070
Helly, as stated in Gnedenko, it is specified that H(nl,ng,]xl,xg)

be an increasing function of (xl,xe), but this is required only so that
the limiting function will also be increasing in (xl,x2), which is not
needed in this context.) Since both the iterated limits of
H(nl,nglxl,xg) converge to H(xl,xg), the joint limit of the subsequence

H(nlk,ngk!xl,xg) also converges to H(xl,xg). Thus

lim ﬁl(n N
(ny omy ) = (=) L 2y
k “k

) (gl)gg)q— )_:f: )

nl~ © neﬂ o nl’ 2)

(_6_1}_8_2)T }22)

= ﬁl('él,gg,w,ge) . (6.11)

If either of the iterated limits given in (6.9) and (6.10) is uniform

in the other index, the limit in (6.11) holds for (nl,n also.

)

So when the decision procedure developed in Section 4.4 is used
as the decision procedure for the distributions Ghl(Ullxl) and
Gng(Uefxg) which only have asymptotic noncentral chi-square distribu-
tions, the approximate minimum risk function based on them and

36 l(Ul’Ue)’ when it converges, approaches the minimum risk function
2

for the exact noncentral chi-square distribution.




VII. APPLICATIONS OF THE DECISION PROCEDURES

Two applications of the decision procedures discussed in
Chapter III will be presented in this chapter. The first one is a
genetic study for which it is reasonable to make assumptions which
lead to the noncentral chi-square distribution for any sample size.
The second application is a goodness-of-fit test which involves the
use of -21nkn, where kn represents the likelihood ratio statistic,
which is asymptotically distributed as a noncentral chi-square under
local alternatives as shown in Part 1. 1In addition to meeting the
distributional assumptions required for the use of the decision proce-
dures developed herein, these examples are appropriate because in each
of them the noncentrality parameter is a measure of the characteristic
about which a decision is desired.

In the first example, human chromosomes must be described as
normal or abnormal. At present only the twenty-two nonsex chromosomes
will be included so that both males and females can be studied jointly.
Each of these chromosomes has two long arms and two short arms. The
main aim of the research is to correctly classify the chromosomes
based on the average long and short arm measurements instead of re-
quiring individual examination by a technician. So far 1L4L0 sets of
chromosomes have been observed from one hundred people and more subjects
will be sampled before any chromosomes are examined for abnormality.

Let T be the vector of average chromosome arm lengths for an

individual. Then 1) will have forty-four elements, that is, a long

114
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and short arm measurement for each of the twenty-two nonsex chromosomes.
Several assumptions will be made about the probability distribution of ﬂ.
The assumptions are as follows: (l) If 7 is a vector of measurements
of normal chromosomes, then T is a random vector from a multivariate
normal distribution with mean vector y and variance-covariance matrix
£; (2) If T is a vector of measurements of abnormal chromosomes, then
N is a random vector from a multivariate normal distribution with mean
vector &% and variance-covariance matrix I; (3) The vector T is made up
of five subvectors ﬂl’ ﬂg, D5’ Ih, and 35 which are statistically inde-
pendent. The values of E* will be different for different kinds of
abnormalities. The breakdown of the chromosomes into the five groups
was done by visual inspection by biologists before measurements were
taken on any chromosomes.

Let N be the number of sets of chromosomes observed and let ﬁ

be the maximum likelihood estimate of 7. Then because of the assumptions

(1), (2), and (3), decisions on the normality or abnormality of chromo-

somes or a subset of the chromosomes are based on the noncentral chi-

square random variable

A - W) (7.1)

U=n(1 - p) 2

whose distribution has noncentrality parameter

It
=
~
=
}
1=
~

(b - w) (7.2)
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if the chromosomes observed are abnormal or

A=0

if the chromosomes observed are normal. The function vy is a measure
of the distance between the vectors E% and p and thus can be used as
a basis of decisions on the normality of the chromosomes. So for the
remainder of the discussion on this area of application, vy will be
considered to be in the form defined in (7.2), with the exception that
T may be replaced by ﬂi’ i=1,...,5 with corresponding changes E%’ By
and Z.

Before specifying the type of decisions to be made about v,
the selection of the initial prior distribution of y will be considered.
The basic form of the initial prior will be assumed to be that of a
gamma, so the tables given in the Appendix can be used. This is not
an unreasonable assumption, for even if a group of individuals do not
have abnormal chromosomes, the mean lengths of their arms can be
expected to vary about p in a manner in accord with a normal probability
distribution. Then Y would be a central chi-square random variable, so
that its distribution would be a particular type of gamma distribution.
Two possible approaches to determine the initial prior are as follows:
(1) Assume that v has a central chi-square distribution; and (2) Using
the data on the 1440 sets of chromosomes observed initially, estimate
the mean and variance of y and then set these equal to the mean p(28)

2
and the variance p(26) , respectively, of the gamma and solve for p

and 6.



117

Now the types of decisions will be considered in two parts:
(1) Decisions of the type developed in Sections 4.2 and 1.3; and
(2) Decisions of the type developed in Section 4.4. The first group
of decisions to be considered will be decisions regarding the normality
or extent of abnormality of a particular group of individual's chromo-
somes or a subset of them. These decisions will be based on N sets of
chromosomes which will be observed from a particular group of individuals.
Now let do be the decision that the chromosomes are normal and dl be the
decision that they are abnormal. Then dO will be the decision that
v ¢ {v|o < v <7} and 4, will be the decision that v e {v|t <y < =},
The value of T would be specified by the experimenter in the following
manner. He will specify a tail probability for the central chi-square
distribution and T will be the value that cuts off this probability.
This method is used because if there are no abnormalities present in
the chromosomes, then the y will act like a central chi-square random
variable. Later when the experimenter has more experience, including
experience with abnormal chromosomes, he may wish to redefine the T
values. It 1s also possible that the experimenter will be able to
define degrees of abnormality in the chromosomes. That is, the interval
[7,») could be broken up into several subintervals, with each subinterval
indicating a different degree of abnormality. So let dO be the decision
that the chromosomes are normal and let di be the decision that the
chromosomes have abnormality of degree i, 1 = 1,...,k. Then dO will be
the decision that v ¢ {v|0 <y < Tl} and di will be the decision that

Y e {YlTi <y < Ti+l}, i=1,...,k, where 7 +o, TIn this case the

k+1 =

T values will be defined by the experimenter based on his past experience.
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The second set of decisions will be used to compare apparent
abnormalities in the chromosomes associated with different types of
physical or mental abnormalities. The methods of Section 4.k will be
used to select the appropriate decisions in each comparison. For this
decision procedure let Yy be the distance measure associated with one
set of chromosomes and Yo be the distance measure associated with the
other set. Then there are three decisions which can be considered;

(1) dos the decision that the chromosomes associated with the first
physical or mental abnormality, exhibit less abnormality than the
chromosomes associated with the second physical or mental abnormality;
(2) dl’ the decision that the abnormalities exhibited in both groups

of chromosomes are about equal; and (3) d,, the decision that the first
group of chromosomes exhibit more abnormalities than the second group
of chromosomes. Then dO is the decision that (Yl’YQ) € {(yl,yg)|y2>yl+7},
d, is the decision that (vy,Y,) € [y v 1v=¥,| < 7} and 4 is the
decision that (Yl’Y2> € {(Yl,yg)lyl >y, + 7}. The value of T would be
specified by the experimenter, since at the time that he would be ready
to make these types of decisions, he would have sufficient experience
to select 7.

The purpose of decision procedures of this type is to aid the
biologists in linking apparent physical or mental abnormalities with
abnormalities in the chromosomes so that if abnormalities are indicated
in one of the subgroups of the chromosomes, future research can be
concentrated on these subgroups.

In the second example a two-decision procedure will be considered.

The two decisions are as follows: (1) dy, an unknown distribution G has
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approximately the specified form FO; and (2) d., the distribution G

l}
does not have the form FO. An appropriate method for considering these
decisions is to divide the domain S of FO into k subsets Sl""’sk and

consider decisions based on whether G(S.) =F (S.), i =1,...,k-1.
i (ORI
This can be done by using the theory developed in Part 1, that is,

using the asymptotic distribution of the likelihood ratio statistic

k ni
L {F (8}
-2loh, = -2in { lgl n? n% } (7.3)
{1y 1
0
under the local alternatives
/n (G(Si) - FO(Si)) -5, (7.4)
asn-—-«, i=1,...,k-1

The form of (7.3) satisfies all the conditions specified in
Part I, so that -anxn, as specified by (7.3), under the local alterna-
tives (7.4) has an asymptotic noncentral chi-square distribution with

k-1 degrees of freedom and noncentrality parameter
k
; J
S RLYENCRIR (7.5)

Then the decision procedure can be specified according to the magnitude
of X in the following manner: (1) Let d, be the decision that
Me {Alo <A <7} and (2) d; be the decision that A e AT <A <=,

where T is a positive tolerance. The value of )\ can be considered as
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a measure of the distance between G and FO and thus an appropriate

measure of how close G is to FO. The value of T will depend on how

close the experimenter wants G to be to FO before he will say that G

is approximately equal to F One method of determining possible T

o
values would be to approximate 5, by G(Si) - FO(Si) and then have the

experimenter specify what proportion r, of F S.) he would allow G(Si)

O( 1

to differ from Fo(Si) in each of the k subsets Sl""’sk' That is,
he would allow
- < < .
FO(Si) riFO(Si) < G(Si) < FO(Si) + riFO(Si) (7.6)

and will still be able to say that G is approximately equal to FO.

Then T would be taken as

k )
T= L (Fo(8;)) [/ Fo8y)

[
™
R

e T
&)

For an initial experiment very little would be known about the
possible distribution of A, so to be able to use the tables given in
the Appendix it could be assumed that A has a gamma prior distribution
with parameters p and 6 and the parameters p and 6 could be specified
so that T would be the median of the gamma prior distribution, as was
discussed in Section 5.2. This procedure would assign equal prior

probability to the two decisions and thus would favor neither of them.




VIII. SUMMARY

Critical values are given for two minimum average risk decision
procedures with the following respective decision regions:

(1) (Ao <a<t)or (it <a <) and (2) (A EG|U) < BOLJU) )
or {(xl,xg)lE(xllUi) > E(xglUé) + 1}, where U, U, and U, are random
variables with noncentral chi-square distributions with S, Sl and S2
degrees of freedom and noncentrality parameters x,xl, and Xg’ respec-
tively, where O <}, xl, xg < w. These critical values are determined
for the case when the loss function is a linear regret function and

the noncentrality parameter has a gamma distribution. These decision
procedures were extended by the use of the Restricted Product method

of Lehmann [1957] to give several multiple decision procedures involving
several independent noncentral chi-square random variables.

When the noncentrality parameter has a gamma distribution and
the posterior distribution of the noncentrality parameter is to be used
for the prior distribution of a future experiment, a way of approximating
the posterior distribution by a gamma distribution was considered. This
approximation was made so that the same set of critical values can be
used for each experiment.

To aid the experimenter in determining his sample size, an
approximate method for determining an optimum sample size, that is,
the sample size which approximately minimizes a specified cost function,
has been provided. The cost functions were formulated under the

assumption that the loss function is a linear regret function and that
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the prior distribution of the noncentrality parameter is a gamma
distribution.

To provide a larger area of possible application, it was shown
that under certain conditions, the decision procedures could be applied
to a random variable which had only an asymptotic noncentral chi-square
distribution.

The decision procedures discussed in this paper are mainly
decision procedures on a distance function which will usually measure
the distance between the parameters or a subset of the parameters of
a distribution under question and a standard distribution. Two such
applications were given, one involving a noncentral chi-square distri-

bution exactly, the other only asymptotically.




APFENDIX

1 TABLES OF C* FOR WHICH H(C*, A%, P, 8) =R

Table 1.1.1. - C¥ for A¥ = 1.0 and S = 1.0

ﬁ\\? 0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50
19.0 £.55 3.23 2.52 1.97 1.50 1.11 0.79 0.54
39.0 7.78 3.87 3.1k 2.55 2.0h 1.60 1l.22 0.90
59.0 7.70 h.o7 3.52 2.91 2.38 1.91 1.50 1.15
75.0 8.01 4 .55 %.80 3,18 .63 2.1k4 1.71 1.3k
99.0 8.24 b7t L .02 3.38 2.8% 2.33 1.89 1.49

Table 1.1.2. - C¥ for A¥ = 2.0 and S = 1.
P 0.10 0.%0 0.50 0.70 0.90 1.10 1.30 1;55
19.0 8.33 4,90 L .29 3.75 3.26 2.82 o.h1 2.0h
39.0 9.20 5.69 5.06 L.51 L .00 3.5% 3.09 2.68
59.0 9.70 6.16 5.53 L.97 L L5 3.96 3.50 3.08
79.0 10.06 6.50 5.87 5.30 .77 Y o7 3.80 3.37
99.0 10.34 6.77 6.14 5.56 5.02 4 .50 4 .ol 3.60
Table 1.1.3. = C¥ for A¥ = 3,0 and S = 1.

ﬁ\\? 0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50
19.0 10.05 6.40 5.84 5.33 4 .85 IiTe) 3.97 3.57
39.0 11.03 7.30 6.7 6.22 5.72 5.25 4 .79 k37
59.0 11.61 7.84 7.28 6.74 6.24 5.75 5.29 4 .85
79.0 12.01 8.23 7.66 7.12 6.61 6.12 5.65 5.20
99.0 12.33 8.5% 7.96 7.2 6.90 6.40 5.93 5.47
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Table 1.1.4. - ¢* for A¥ = 4.0 and S = 1.0

12k

Y 0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50
19.0 11.72 7.82 7.30 6.81 6.34 5.89 5.46 5.0k
39.0 12.80 8.83 8.30 7.79 7.31 6.84 6.39 5.95
59.0 13.43 9.h2 8.89 8.38 7.88 7.40 6.94 6.50
79.0 13.87 9.85 9.31 8.79 8.29 7.81 7.34 6.89
99.0 .21 10.18 9.64 9.12 8.62 8.13 7.65 7.20
Table 1.1.5. - C¥ for A¥ = 5.0 and S = 1.
P 0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50
19.0 13.34 9.21 8.71 8.23 7.76 7.31 . 6.88 6.45
39.0 1%4.50 10.29 9.79 9.29 8.81 8.35 7.90 7.46
59.0 15.17 10.9% 10.4k2 9.93 9.4k 8.97 8.51 8.06
79.0 15.65 11.b.0 10.88 10.38 9.89 9.41 8.94 8.49
99.0 19.21  11.76 11.2% 10.75 10.23 9.75 9.28 8.82
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Table 1.2.1. - C¥ for A¥ = 1.0 and 8§ = 2.0
EF\P 0.20 0.h0 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
19.0 L4L.69 3.69 2.95 2.35 1.83 1.39 1.01 0.70 0.k 0.23
39.0 5.39 k.38 3.62 2.98 2.2 1.93 1.51 1.14% 0.82 0.55
59.0 5.80 L4.79 L.02 3.36 2.78 2.27 1.82 1.42 1.07 0.77
79.0 6.10 5.09 k.31 3.64 3.05 2.52 2.05 1.65 1.27 0.9%
99.0 6.33 5.32 L.53 3.86 3.26 2.72 2.24 1.81 1l.k2 1.09

Table 1.2.2, - C*¥ for A¥ = 2,0 and S = 2.0
ﬁ\\? 0.20 0.k0 0.60 0.80 1.00 1.20 1.40 1.60- 1.80 2.00
19.0 6.19 5.38 L.74 L4.17 3.65 3.18 2.74% 2.34 1.98 1.65
39.0 6.98 6.18 5.53 L.94 Lk.h1 3,91 3.44 3,01 2.61 2.24
59.0 T.45 6.66 6.01 5.41 L.86 L4.35 3.87 3.hk2 3.00 2.61
79.0 7.79 7.01 6.35 5.75 5.19 L.67 L.18 3.72 3.29 2.89
9.0 8.06 T7.28 6.62 6.01 5.45 L.92 L.Ah3 3.96 3.52 3,10

Table 1.2.3. - C¥ for A¥ = 3,0 and S = 2.0
RN 0.00 0.0 0.60 0.80 1.00 1.20 1.10 1.60 1.80 2.00
19.0 T.52 6.85 6.27 5.73 5.23 Lk.76 k.32 3.89 3.50 3.12
39.0 8.2 T7.76 T7.17 6.63 6.11 5.62 5.15 L.71 L..s8 3.88
59.0 8.95 8.30 T7.71 T7.16 6.63 6.13 5.66 5.20 L.76 L.3L
79.0 9.34 8.69 8.10 T.54 T7.01 6.50 6.02 5.55 5.11 .L.68
99.0 9.6k 8.99 8.40 T.8% 7.31 6.79 6.30 5.8% 5.38 L.94
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Table 1.2.4., - C*% for A¥ = 4,0 and S = 2.0
ﬁ\\P 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
19.0 8.8% 8.24 7.71 T7.20 6.71 6.24 5.80 5.37 4.96 L4.56
39.0 9.83 9.25 8.71 8.19 7.69 T7.20 6.74 6.29 5.86 5.44
59.0 10.43 9.85 9.30 8.77 8.27 7.78 7T7.30 6.8+ 6.40 5.97
79.0 10.86 10.28 9.73 9.19 8.68 8.19 T7.71 7.24 6.79 6.36
99.0 11.19 10.61 10.06 9.52 9.01 8.51 8.02 7.55 7.10 6.66

Table 1.2.5. - C* for A¥ = 5.0 and S = 2.0
R\ 0.20 0.10 0.60 0.80 1.00 1.20 1.0 1.60 1.80 2.00
19.0 10.15 9.60 9.09 8.60 8.12 T7.66 T7.21 6.78 6.36 5.96
39.0 11.24 10.70 10.18 9.67 9.18 8.71 8.25 7.80 7.36 6.9
59.0 11.89 11.34 10.82 10.31 9.81 9.3%3 8.86 8.41 7.96 7.53
79.0 12.35 11.81 11.28 10.76 10.26 9.78 9.30 8.8% 8.39 7.95
99.0 12.71 12.17 11.64 11.12 10.62 10.12 9.64 9.18 8.72 8.28

Table 1.3.1. - C*¥ for A¥ = 1.0 and S = 3.0
RN\ 0.70 0.90 1.10 1.50't1.5o 1.70 1.90 2.10 2.30 2.50
19.0 3.24 2.59 2.04 1.55 1.13 0.77 0.46 0.20 0.00 0.00
39.0 3.95 3.27 2.68 2.15 1.69 1.27 0.91 0.60 0.34% 0.12
59.0 L.37 3.69 3.07 2.52 2.03 1.59 1.20 0.86 0.57 0.32
79.0 4.68 3.98 3.36 2.80 2.29 1.83 1.h2 1.06 0.7+ 0.47
99.0 L4.92 L4.21 3.58 3.01 2.49 2,02 1.60 1.22 0.89 0.60
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Table 1.3.2. - C¥ for A¥ = 2.0 and S = 3.0
ﬁ\\? 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50
19.0 5.11 L4.51 3.97 3.47 3.01 2.59 2.20 1.84% 1.51 1.22
39.0 5.92 5.31 L4L.75 L.23 3.4 3.29 2.86 247 2.11 1.77
59.0 6.41 5.79 5.22 L4L.69 L4.19 3.72 3.27 2.86 2.hk8 2.12
79.0 6.76 6.14 5.56 5.02 4.51 4.03 3.57 3.15 2.75 2.38
99.0 T7.03 6.41 5.8% 5.28 L4.76 L.27 3.81 3.38 2.97 2.59

Table 1.5.5., = C¥ for A¥ = 3,0 and S = 3.0
NS 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50
19.0 6.65 6.09 5.57 5.08 4.2 L.18 3.77 3.37 3.00 2.66
39.0 7.56 T7.00 6.47 5.96 5.8 5.02 4.58 L4.,16 3.76 3.38
59.0 8.11 T7.5% T7.00 6.48 5.99 5.52 5.07 Lk.63 k.22 3%.83
79.0 8.50 T7.93 7T7.38 6.86 6.36 5.88 5.k2 4,98 L.56 L.15
99.0 8.81 8.23 T7.68 7.6 6.65 6.16 5.70 5.25 L.82 L4.h]

Table 1.3.4. - C¥ for A¥ = 4.0 and S = 3.0
RNY 0.70 0.90 1.10 1.%0 1.50 1.70 1.90 2.10 2.%0 2.50
19.0 8.08 T7.55 7.05 6.57 6.11 5.67 5.24 L.8h L.45 L.08
39.0 9.09 8.55 8.04 T.55 T.07 6.61 6.17 5.7% 5.33 L4.93
59.0 9.69 9.15 8.63 8.13 7.6k T.17 6.72 6.28 5.86 5.45
79.0 10.12 9.57 9.05 8.54 8.05 7.57 7.1l 6.67 6.24 5.82
99.0 10.45 9.91 9.38 8.87 8.37 T7.89 T.42 6.97 6.53 6.11
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Table 1.3.5. - C¥ for A¥ = 5.0 and S = 3.0
ﬁ\\? 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.%0
19.0 9.46 8.95 8.46 7.99 T.53 T7.09 6.66 6.25 5.85 5.46
39.0 10.55 10.04 9.54 9.05 8.58 8.12 T7.68 T7.25 6.83 6.42
59.0 11.20 10.68 10.17 9.68 9.20 8.7+ 8.28 7.84 7T.k1 7.00
79.0 11.66 11.14 10.63 10.13 9.65 9.17 8.72 8.27 7.83 7.kl
99.0 12.02 11.49 10.98 10.48 9.99 9.52 9.05 8.60 8.16 7.73

Table 1.4.1. - ¢¥ for A¥ = 1.0 and S = 4.0
§\§? 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
19.0 2.16 1.63 1.17 0.77 0.k2 0.12 0.00 0.00 0.00 0.00
39.0 2.86 2.30 1.79 1.3% 0.9% 0.59 0.29 0.03 0.00 0.00
59.0 3.28 2.70 2.17 1.70 1.27 0.89 0.5 0.27 0.02 0.00
79.0 3.58 2.99 2.45 1.96 1.51 1.11 0.76 0.45 0.19 0.00
99.0 3.82 3.22 2.67 2.16 1.71 1.29 0.9% 0.60 0.32 0.07

Table 1.4.2. - C¥ for A¥ = 2.0 and S = 4.0
RN 1.00 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
19.0 L4.23 3,71 3.23 2.78 2.37 1.98 1.63 1.31 1.02 0.76
39.0 5.05 4.50 3.99 3.52 3.07 2.66 2.27 1.91 1.58 1.28
59.0 5.53 4,98 L.46 3.96 3.50 3.07 2.66 2.29 1.9% 1.61
79.0 5.88 5.32 L4L.79 L.29 3.81 3.37 2.95 2.56 2.20 1.86
99.0 6.16 5.59 5.05 4.54 L.06 3.61 3.18 2.78 2.4L0 2.06
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Table 1.4.3. - C* for A¥* = 3.0 and S = 4.0
RNP 1.00 1.0 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
19.0 5.88 5.37 L4.89 L.k L.00 3.60 3.21 2.84 2.50 2.18
39.0 6.79 6.27 5.77 5.29 L.gh 4.kl 3.99 3.60 3.23 2.88
59.0 T.34+ 6.81 6.30 5.81 5.34 L4.90 L.47 L.06 3.67 3.31
79.0 7.7% T7.19 6.67 6.18 5.70 5.25 4.81 L.ho L4.00 3.62
99.0 8.03 T.49 6.97 6.47 5.99 5.53 5.08 L4.66 L4.25 3.87

Table 1.4.4. - C* for A¥ = 4.0 and § = i,0
ﬁ\\? 1.20 1.0 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
19.0 7.37 6.88 6.40 5.95 5.51 5.09 L4.69 4.%0 3.9% 3.58
39.0 8.38 T7.87 7.38 6.91 6.5 6.01 5.59 5.18 k.79 L.u1
59.0 8.97 8.46 T.96 T.k8 T.01 6.56 6.13 5.71 5.31 k4.92
79.0 9.450 8.88 8.38 T7.89 T.h2 6.96 6.52 6.09 5.68 5.28
99.0 9.73 9.21 8.70 8.21 T.73 7.27 6.82 6.39 5.97 5.56

Table 1.4.5. - C¥ for A¥ = 5.0 and S = 4.0
ﬁ\\P 1.20 1.h0 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
19.0 8.79 8.30 7.8+ 7.38 694 6.52 6.11 5.71 5.33 k.96
39.0 9.87 9.38 8.90 8.43 T7.97 7.53 T7.11 6.69 6.29 5.90
59.0 10.52 10.01 9.53 9.05 8.59 8.14% T7.70 T7.27 6.86 6.46
79.0 10.97 10.47 9.98 9.49 9.03 8.57 8.13 T7.69 7T.27 6.86
99.0 11.33 10.82 10.32 9.8k 9.37 8.91 8.46 8.02 7.59 7.18
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Table 1.5.1. - C*¥ for A¥ = 1.0 and S = 5.0
ﬁ\\fr 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50
19.0 1.16 0.71 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
39.0 1.8% 1.35 0.92 0.53 0.19 0.00 0.00 0.00 0.00 0.00
50.0 2.25 1,74 1.28 0.87 0.50 0.18 0.00 0.00 0.00 0.00
79.0 2.55 2.02 1.55 1l.12 0.75 0.38 0.08 0.00 0.00 0.00
99.0 2.78 2.25 1.76 1.31 0.91 0.55 0.24 0.00 0.00 0.00

Table 1.5.2. - C¥ for A¥ = 2.0 and S = 5.0
RN 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50
19.0 3.40 2.93 2.49 2.09 1.71 1.37 1.06 0.77 0.52 0.29
39.0 L4.20 3.71 3.2k 2.80 2.39 2.02 1.66 1.34 1.04 0.77
59.0 4.68 L4.17 3.69 3.24 2.81 2.41 2.04 1.70 1.38 1.09
79.0 5.03 L4L.51 L4.02 3.55 3.12 2.70 2.32 1.96 1.63 1.32
99.0 5.30 4.77 L.27 3.80 3.35 2.93 2.54% 2.17 1.82 1.50

Table 1.5.%. - C¥ for A¥ = 3.0 and S = 5.0
ﬁ\\? 1.70 1.90 2.10 2.30 2.50 2.70 45.90 3,10 3.30 3.50
19.0 5.1% L4.66 L.21 3.79 3.38 3.00 2.64 2.31 1.99 1.69
39.0 6.04 5.54 5.07 4.63 k.20 3.79 3.40 3.04 2.69 2.36
59.0 6.57 6.07 5.59 5.13 L.69 L4.27 3.87 3.8 3.12 2.77
79.0 6.96 6.45 5.96 5.49 5.04 L.61 L.20 3.81 3.43 3.08
99.0 7.26 6.75 6.25 5.78 5.%32 L4.88 L.k6 L4.06 3.68 3.31
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Table 1.5.4. - C* for A¥ = 4.0 and S = 5.0
RN 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50
19.0 6.67 6.21 5.76 5.32 L.91 L4.,51 4,13 3.77 3.k2 3.09
9.0 T.67 7.18 6.72 6.27 5.83 5.41 5.01 4.62 k.25 3.89
59.0 8.26 T7.77 T.29 6.83 6.38 5.95 5.54 5.1k L.75 L.38
79.0 8.68 8.18 T7.70 7.23 6.78 6.34 5.92 5.51 5.11 k4.73
99.0 9.01 8.51 8.02 T7.55 T.09 6.64 6.21 5.80 5.40 5.01

Table 1.5.5. - C¥ for A¥ = 5.0 and S = 5.0
RNY 1.70 1.90 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50
19.0 8.12 T.66 T.21 6.77 6.35 5.95 5.55 5.17 L4.81 L.L6
39.0 9.20 8.72 8.26 T.81 T.37 6.9% 6.53 6.13 5.7 5.37
59.0 9.83 9.35 8.88 8.4k2 T.97 T.54% T.11 6.70 6.31 5.92
79.0 10.29 9.80 9.32 8.86 8.M40 7T.96 7.5%3 T7.12 6.71 6.%2
99.0 10.64 10.15 9.67 9.20 8.74 8.29 7.86 T.h T.03 6.63




2 TABIES OF W(p, 8%, 8)

Table 2.1. - W(p, 6%, S) for S =1

o~y 0.0 0.30 0.50 0.70 0.90 1.10  1.30
1.0 0.3% O.74 1.00 1.19 1.34 1.46 1.57
2.0 0.50 0.84 1.00 1.11 1.20 1.27 1.34
3.0 0.66 0.90 1.00 1.07 1.1k 1.19 1.24
4.0 0.79 0.93 1.00 1.05 1.10 1.15 1.19
5.0 0.86 0.95 1.00 1.04 1.08 1.12 1.15
6.0 0.90 0.96 1.00 1.0k 1.07 1.10 1.13
7.0 0.92 0.97 1.00 1.03 1.06 1.08 1.11
8.0 0.9% 0.97 1.00 1.03 1.05 1.07 1.10
9.0 0.95 0.98 1.00 1.02 1.04 1.07 1.09
10.0 0.95 0.98 1.00 1.02 1.0k 1.06 1.08
11.0 0.96 0.98 1.00 1.02 1.04 1.05 1.07
12.0 0.96 0.98 1.00 1.02 1.03 1.05 1.07
13.0 0.97 0.98 1.00 1.02 1.03 1.05 1.06
4.0 0.97 0.98 1.00 1.01 1.03 1.04 1.06
15.0 0.97 0.99 1.00 1.01 1.03 1.04 1.05
20.0 0.98 0.99 1.00 1.01 1.02 1.03 1.0k
25.0 0.98 0.99 1.00 1.01 1.02 1.02 1.03
30.0 0.99 0.99 1.00 1.01 1.01 1.02 1.03
35.0 0.99 0.99 1.00 1.01 1.01 1.02 1.02
40.0 0.99 0.99 1.00 1.01 1.01 1.01 1.02
45.0 0.99 1.00 1.00 1.00 1.01 1.01 1.02
50 .0 0.99 1.00 1.00 1.00 1.01 1.01 1.02
75.0 0.99 1.00 1.00 1.00 1.01 1.01 1.01
100 .0 1.00 1.00 1.00 1.00 1.00 1.00 1.01

132




133

Table 2.1. - Continued

o~p 1.50 1.70 1.90 2.10 2.30 2.50
1.0 1.67 1.75 1.84 1.91 1.98 2.05
2.0 1.40 1.46 1.51 1.56 1.61 1.65
3.0 1.29 1.33 1.37 1.h1 1.44 1.k8
e 1.22 1.26 1.29 1.32 1.35 1.38
5.0 1.18 1.21 1.24 1.27 1.29 1.32
6.0 1.15 1.18 1.20 1.23 1.25 1.27
7.0 1.13 1.16 1.18 1.20 1l.22 1.24
8.0 1.12 1.14 1.16 1.18 1.20 1.21
9.0 1.11 1.12 1.14 1.16 1.18 1.19
10.0 1.10 1.11 1.13 1.14 1.16 1.18
11.0 1.09 1.10 1.12 1.13 1.15 1.16
12.0 1.08 1.09 1.11 1.12 1.14 1.15
13.0 1.07 1.09 1.10 1.11 1.13 1.1k
4.0 1.07 1.08 1.09 1.11 1.12 1.13
15.0 1.06 1.08 1.09 1.10 1.11 1.12
20.0 1.05 1.06 1.07 1.08 1.08 1.09
25.0 1.04 1.05 1.05 1.06 1.07 1.08
30.0 1.03 1.0k 1.05 1.05 1.06 1.06
35.0 1.03 1.03 1.04 1.0k 1.05 1.05
Lo.o 1.02 1.03 1.03 1.04 1.04 1.05
45.0 1.02 1.03 1.03 1.03 1.0k4 1.0k4
50.0 1.02 1.02 1.03 1.03 1.04 1.04
75.0 1.01 1.02 1.02 1.02 1.02 1.03
100.0 1.01 1.01 1.01 1.02 1.02 1.02
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Table 2.2. - W(p, 6%, 8) for S =2
ox~P 0.0 0.40 0.60 0.80  1.00 1.20 1.0  1.60
1.0 0.3 0.5 0.71 0.87 1.00 1l.12 1.23 1.33
2,0 0.2 0.4 0.79 0.91 1.00 1.08 1.15 1l.22
3.0 0.5 0.7% 0.85 0.935 1.00 1.06 1.11 1.16
4.0 0.6 0.81 0.89 0.95 1.00 1.05 1.09 1.13
5.0 0.76 0.85 0.91 0.96 1.00 1.04 1.07 1.11
6.0 0.82 0.88 0.95 0.97 1.00 1.03 1.06 1.09
7.0 0.85 0.90 0.9% 0.97 1.00 1.03 1.05 1.08
8.0 0.8 0.92 0.95 0.97 1.00 1.02 1.05 1.07
9.0 0.9 0.935 0.95 0.98 1.00 1.02 1.04 1.06
0.0 0.9 0.9% 0.96 0.98 1.00 1.02 1.0% 1.06
11.0 0.92 0.9% 0.96 0.98 1.00 1.02 1.04 1.05
12.0 0.95 0.95 0.97 0.98 1.00 1.02 1.05 1.05
13.0 0.95 0.95 0.97 0.98 1.00 1.02 1.03 1.0k
.0 0.9+ 0.95 0.97 0.99 1.00 1.01 1.03 1.0k
15.0 0.94 0.96 0.97 0.99 1.00 1.01 1.03 1.0k
20.0 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03
25.0 0.97 0.98 0.98 0.99 1.00 1.01 1l.02 1.02
0.0 0.97 0.98 0.99 0.99 1.00 1.01 1.01 1.02
3.0 0.98 0.98 0.99 0.99 1.00 1.01 1.01 1.02
Lo.o 0.98 0.98 0.99 0.99 1.00 1.00 1.01 1.01
45.0 0.98 0.99 0.99 1.00 1.00 1.00 1.0l 1.0l
5.0 0.98 0.99 0.99 1.00 1.00 1.00 1.01 1.01
75.0 0.99 0.99 0.99 1.00 1.00 1.00 1.01 1.01
100.0 0.9 0.99 0.99 1.00 1.00 1.00 1.00 1.01
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Table 2.2. ~ Continued

o>  1.80 2.00 2.0 2.0 2.60 2.80  3.00
1.0 1.k2 1.50 1.58 1.65 1.72 1.79 1.86
2.0 1.28 1.33 1.39 1.4 1.k8 1.53 1.57
3.0 1.21 1.25 1.29 1.33 1.37 1.k0 1.43
4.0 1.17 1.20 1.23 1.26 1.30 1.32 1.35
5.0 1.14 1.17 1.19 1.022 1.25 1.27 1.30
6.0 1.12 1.14 1.17 1.19 1.21 1.24 1.26
7.0 1.10 1.13 1.15 1.17 1.19 1.21 1.23
8.0 1.09 1.11 1.13 1.15 1.17 1.19 1.20
9.0 1.08 1.10 1.12 1.1k 1.15 1.17 1.18
10.0 1.07 1.09 1.11 1.12 1.1 1.15 1.17
11.0 1.07 1.08 1.10 1.11 1.13 1.14 1.16
12.0 1.06 1.08 1.09 1.10 1.12 1.13 1.1
13.0 1.06 1.07 1.08 1.10 1.11 1.12 1.13
1.0 1.05 1.07 1.08 1.09 1.10 1.11 1.13
15.0 1.05 1.06 1.07 1.09 1.10 1.11 1.12
20.0 1.04 1.05 1.06 1.07 1.07 1.08 1.09
25.0 1.03 1.04 1.05 1.05 1.06 1.07 1.07
30.0 1.03 1.03 1.0k 1.0k 1.05 1.06 1.06
35.0 1.02 1.03 1.03 1.04 1.04 1.05 1.05
40.0 1.02 1.02 1.03 1.03 1.0k 1.04 1.05
45.0 1.02 1.02 1.03 1.03 1.03 1.0k 1.0k
50 .0 1.02 1.02 1.02 1.03 1.03 1.03 1.0k
5.0 1.01 1.01 1.02 1.02 1.02 1.02 1.03
100.0 1.01 1.01 1.01  1.01 1.02 1.02 1.02
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Table 2.3. - W(p, 6%, 8) for S =3

o> 0.5 0.70 0.90 1.10 1.30 1.50 1.70 1.90
1.0 0.3 0.57 0.69 0.80 0.90 1.00 1.09 1.17
2.0 0.53 0.66 0.76 0.85 0.95 1.00 1..07 1.13
3.0 0.63 0.75 0.81 0.88 0.9% 1.00 11.05 1.10
Lo 0.7 0.79 0.85 0.91 0.96 1.00 1.0% 1.08
5.0 0.76 0.8% 0.88 0.92 0.9 1.00 1.03 1.07
6.0 0.81 0.8 0.90 0.9% 0.97 1.00 1.03 1.06
7.0 0.8+ 0.88 0.92 0.9% 0.97 1.00 1.03 1.05
8.0 0.8 0.8 0.92 0.95 0.98 1.00 1.02 1.0k
9.0 0.88 0.91 0.93 0.96 0.98 1.00 1.02 1.0k

10.0 0.89 0.92 0.9% 0.9 0.98 1.00 1.02 1.0k
11.0 0.90 0.92 0.9% 0.96 0.98 1.00 1.02 1.03
2.0 0.91 0.9% 0.95 0.97 0.98 1.00 1.02 1.03
13.0 0.92 0.9% 0.95 0.97 0.98 1.00 1.01 1.03
.0 0.95 0.94 0.9 0.97 0.99 1.00 1.01 1.03
5.0 0.93 0.95 0.96 0.97 0.99 1.00 1.01 1.03
20.0 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
25.0 0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.02
0.0 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.01
3.0 0.97 0.98 0.98 0.99 0.99 1.00 1.01 1.01
0.0 0.97 0.98 0.98 0.99 1.00 1.00 1.00 1.0l
45.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.0l
5.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01
7.0 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.01
100.0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
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Table 2.35. - Continued

o~ 2.10 2.30 2.50 2.70 2.90 3.10 3.30 3.50
1.0 1.25 1.33 1.h0 1.k7 1,53 1.60 1.66 1.7°
2.0 1.18 1.2% 1.29 1.33 1.38 1.2 1.47 1.51
3.0 1.14%  1.18 1l.22 1.26 1.30 1.33 1.3 1.ho
L.o 1.2 1.15 1.18 1.21 1.2% 1.27 1.30 1.33
5.0 1.10 1.13 1.15 1.18 1.21 1.23 1.26 1.28
6.0 1.08 1.11 1.13 1.1 1.18 1.20 1.22 1.24
7.0 1.07 1.10 1.12 1.4 1.16 1.18 1.20 1l.22
8.0 1.07 1.09 1.11 1.12 1.1% 1.16 1.18 1.19
9.0 1.06 1.08 1.10 1.11 1.1 1.15 1,16 1.18

0.0 1.05 1.07 1.09 1.10 1.12 1.13 1.15 1.16
11.0 1.05 1.06 1.08 1.09 1.11 1.12 1.14% 1.15
2.0 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.1k
13.0 1.04 1.06 1.0 1.08 1.09 1.11 1.12 143
k.0 1.06 1.05 21.06 1.08 1.09 1.10 1.11 1.l2
15.0 1.04 1.05 1.06 1.0 1.08 1.09 1.10 1.1
20.0 1.03 1.04 1.05 1.06 1.06 1.07 1.08 1.09
25.0 1.02 1.0 1.04 1.04 1.05 1.06 1.07 1.07
30.0 1.02 1.03 1.03 1.0k 1.0k 1.05 1.06 1.06
35.0 1.02 1.02 1.03 1.03 1.0+ 1.04 1.05 1.05
k.0 1.01 1.02 1.02 1.05 1.03 1.04 1.04 1.05
45,0 1.01 1.02 1.02 1.03 1.03 1.03 1.04 1.0k
50.0 1.01 1.02 1.02 1.02 1.03 1.03 1.03 1.0k
75.0 1.01 1.0l 1.01 1.02 1.02 1.02 1.02 1.03
100.0 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02




Table 2.4. - W(p,
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%, 8) for 8 =14

d¥\\3 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40
1.0 0.58 0.68 0.76 0.85 0.92 1.00 1.07 1.1k
2.0 0.66 0.7% 0.81 0.88 0.9% 1.00 1.06 1.11
3.0 0.72 0.79 0.8 0.90 0.95 1.00 1.04 1.09
Lo o0.77 0.82 0.87 0.92 0.96 1.00 1.04 1.07
5.0 0.81 0.85 0.89 0.93 0.97 1.00 1.03 1.06
6.0 0.8+ 0.87 0.91 0.9% 0.97 1.00 1.03 1.05
7.0 0.86 0.89 0.92 0.95 0.97 1.00 1.02 1.05
8.0 0.88 0.90 0.935 0.95 0.98 1.00 1.02 1.0k4
9.0 0.8 0.91 0.94 0.9 0.98 1.00 1.02 1.04

10.0 0.90 0.92 0.9% 0.96 0.98 1.00 1.02 1.03
11.0 0.91 0.95 0.95 0.97 0.98 1.00 1.02 1.03
2.0 0.92 0.95 0.95 0.97 0.98 1.00 1.02 1.03
13.0 0.92 0.9% 0.9 0.97 0.99 1.00 1.01 1.03
.0 0.95 0.9%4 0.9 0.97 0.99 1.00 1.01 1.03
5.0 0.95 0.95 0.96 0.97 0.99 1.00 1.01 1.02
20.0 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
25.0 0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.02
3.0 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.01
3.0 0.97 0.98 0.98 0.99 0.99 1.00 1.01 1.0l
ho.0o 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.01
Ls.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01
5.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.0l
7.0 0.9 0.99 0.99 0.99 1.00 1.00 1.00 1.01
100.0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
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Table 2.4. - Continued

o~F 2.60 2.80 3.00 3.20 3.450 3.60 3.80 4.00
1.0 1.21 1l.27 1.33 1.39 1.5 1,51 1.5 1.62
2.0 1.16 1.20 1.25 1.29 1.34 1.38 1.hk2 1.5
3.0 1.13 1.16 1.20 1.23 1.27 1.30 1.3%3 1.36
L.o 1.10 1.1% 1.17 1.20 1l.22 1.25 1.28 1.30
5.0 1.09 1.12 1.1% 1.17 1.19 1l.22 1.2% 1.26
6.0 1.08 1.10 1.13 1.15 1.17 1.19 1.21 1.23
7.0 1.0 1.09 1.1 1.13 1.15 1.17 1.19 1.e1
8.0 1.06 1.08 1.10 1.12 1.1% 1.15 1.17 1.19
9.0 1.06 1.07 1.09 1.11 1l.12 1.14% 1.16 1.17

10.0 1.05 1.07 1.08 1.10 1.11 1.13 1.14% 1.16
11.0 1.05 1.06 1.08 1.09 1.11 1.12 1.13 1.15
2.0 1.04 1.06 1.07 1.08 1.10 1.11 1.12 1.1k
1.0  1.04 1.05 1.07 1.08 1.09 1.10 1.11 1.13
%.0 104 1.05 1.06 1.07 1.09 1.10 1.11 1.12
15.0 1.04 1.04 1.06 1.07 1.08 1.09 1.10 1.11
20.0 1.03 1.04 1.05 1.05 1.06 1.07 1.08 1.09
25.0 1.02 1.05 1.0 1.04 1.05 1.06 1.06 1.07
30.0 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.06
35.0 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05
0.0 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.05
45.0 1.01 1.02 1.02 1.03 1.03 1.03 1.04 1.04
50.0 1.01 1.02 1.02 1.02 1.03 1.03 1.03 1.04
75.0 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.03
100.0 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02
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Table 2.5. - W(p, 6%, 8) for S =5

ox~% 1.0 1.70 1.0 2.10 2.30  2.50 _2.70__ 2.90
1.0 0.66 O0.7T% o0.81 0.87 0.9+ 1.00 1.06 1.12
2.0 0.72 0.78 0.8+ 0.90 0.95 1.00 1.05 1.09
3.0 0.77 0.82 0.87 0.92 0.96 1.00 1.0b 1.08
4.0 0.80 0.85 0.89 0.93 0.97 1.00 1.03 1.07
5.0 0.8 0.87 0.90 0.9% 0.97 1.00 1.03 1.06
6.0 0.85 0.89 0.92 0.95 0.97 1.00 1.03 1.05
7.0 0.87 0.90 0.93 0.95 0.98 1.00 1.02 1.0k
8.0 0.89 0.91 0.93 0.9 0.98 1.00 1.02 1.0k
9.0 0.90 0.92 0.9% 0.96 0.98 1.00 1.02 1.0k
10.0 0.91 0.95 0.95 0.96 0.98 1.00 1.02 1.03
11.0 0.91 0.935 0.95 0.97 0.98 1.00 1l.02 1.03
12.0 0.92 0.9% 0.95 0.97 0.99 1.00 1.01 1.03
13.0 0.93 0.9% 0.9 0.97 0.99 1.00 1.01 1.03
%.0 0.9% 0.95 0.96 0.97 0.99 1.00 1.01 1.03
15.0 0.9% 0.95 0.96 0.98 0.99 1.00 1.01 1.02
20.0 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
25.0 0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.01
30.0 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.01
3.0 0.97 0.98 0.98 0.99 0.99 1.00 1.01 1.01
k.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 .01
45.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01
50.0 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.01
7.0 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.01
100.0 0.9 0.99 0.99 1.00 1.00 1.00 1.00 1.00




Table 2.5. - Continued
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oL 3,10 330 3.50 3.70 3.90 4.10 4.30 L.50
1.0 1.18 1.23 1.29 1.34 1.39 1.44 1.9 1.5k
2.0 1.1+ 1.18 1.22 1.26 1.30 1.34 1.38 1.k1
3.0 1.11 1.15 1.18 1.21 1.25 1.28 1.31 1.3k
L.o 1.10 1.13 1.15 1.18 1.21 1.23 1.26 1.28
5.0 1.08 1.11 1.13 1.16 1.18 1.20 1.2% 1.25
6.0 1.07 1.10 1l.12 1.1% 1.16 1.18 1.20 1.22
7.0 1.07 1.09 1.11 1.12 1.1% 1.16 1.18 1.20
8.0 1.06 11.08 1.10 1.11 1.13 1.15 1.16 1.18
9.0 1.05 1.07 1.09 1.10 1l.12 1.13 1.15 1.16

0.0 1.05 1.06 1.08 1.09 1.11 1.12 1.14 1.15
11.0 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.1k
2.0 1.04 1.06 1.07 1.08 1.09 1.11 1l.12 1.13
3.0 1.04 1.05 1.06 1.08 1.09 1.10 1.11 1.12
.0 1l.04 1.05 1.06 1.07 1.08 1.09 1.10 1.12
5.0 1.03 1.05 1.06 1.07 1.08 1.09 1.10 1.11
20.0 1.03 1.0k 1.0 1.05 1.06 1.07 1.08 1.09
25.0 1.02 1.03 1.04 1.04 1.05 1.06 1.06 1.07
30.0 1.02 1.02 1.03 1.04 1.04 1.05 1.05 1.06
35.0 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05
Lko.o 1.02 1.02 1.02 1.03 1.03 1.04 1.04 1.05
ks.0 1.01 1.02 1.02 1.05 1.03 1.03 1.0% 1.04
50.0 1.0l 1.02 1.02 1.02 1.05 1.05 1.03 1.0k
75.0 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.03
100.0 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02
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